Jarred Capellman - Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#
Here you can read online Jarred Capellman - Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C# full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2020, publisher: Packt Publishing, genre: Computer. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:
Romance novel
Science fiction
Adventure
Detective
Science
History
Home and family
Prose
Art
Politics
Computer
Non-fiction
Religion
Business
Children
Humor
Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.
- Book:Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#
- Author:
- Publisher:Packt Publishing
- Genre:
- Year:2020
- Rating:5 / 5
- Favourites:Add to favourites
- Your mark:
Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#: summary, description and annotation
We offer to read an annotation, description, summary or preface (depends on what the author of the book "Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.
Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core
Key Features- Get well-versed with the ML.NET framework and its components and APIs using practical examples
- Learn how to build, train, and evaluate popular machine learning algorithms with ML.NET offerings
- Extend your existing machine learning models by integrating with TensorFlow and other libraries
Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, youll explore how to build ML.NET applications with the various ML models available using C# code.
The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. Youll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. Youll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. Youll also learn to integrate TensorFlow in ML.NET applications. Later youll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR.
By the end of this book, youll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET.
What you will learn- Understand the framework, components, and APIs of ML.NET using C#
- Develop regression models using ML.NET for employee attrition and file classification
- Evaluate classification models for sentiment prediction of restaurant reviews
- Work with clustering models for file type classifications
- Use anomaly detection to find anomalies in both network traffic and login history
- Work with ASP.NET Core Blazor to create an ML.NET enabled web application
- Integrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detection
If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.
Table of Contents- Getting started with Machine Learning and ML.NET
- Setting up the ML.NET environment
- Regression Model
- Classification Model
- Clustering Model
- Anomaly Detection Model
- Matrix Factorization Model
- Using ML.NET with .NET Core and Forecasting
- Using ML.NET with ASP.NET
- Using ML.NET with UWP
- Training and Building Production Models
- Using Tensorflow with ML.NET
- Using ONNX with ML.NET
Jarred Capellman: author's other books
Who wrote Hands-On Machine Learning with ML.NET: Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#? Find out the surname, the name of the author of the book and a list of all author's works by series.