Introduction
The data warehousing and business intelligence (DW/BI) industry certainly has matured since Ralph Kimball published the first edition of The Data Warehouse Toolkit (Wiley) in 1996. Although large corporate early adopters paved the way, DW/BI has since been embraced by organizations of all sizes. The industry has built thousands of DW/BI systems. The volume of data continues to grow as warehouses are populated with increasingly atomic data and updated with greater frequency. Over the course of our careers, we have seen databases grow from megabytes to gigabytes to terabytes to petabytes, yet the basic challenge of DW/BI systems has remained remarkably constant. Our job is to marshal an organization's data and bring it to business users for their decision making. Collectively, you've delivered on this objective; business professionals everywhere are making better decisions and generating payback on their DW/BI investments.
Since the first edition of The Data Warehouse Toolkit was published, dimensional modeling has been broadly accepted as the dominant technique for DW/BI presentation. Practitioners and pundits alike have recognized that the presentation of data must be grounded in simplicity if it is to stand any chance of success. Simplicity is the fundamental key that allows users to easily understand databases and software to efficiently navigate databases. In many ways, dimensional modeling amounts to holding the fort against assaults on simplicity. By consistently returning to a business-driven perspective and by refusing to compromise on the goals of user understandability and query performance, you establish a coherent design that serves the organization's analytic needs. This dimensionally modeled framework becomes the platform for BI. Based on our experience and the overwhelming feedback from numerous practitioners from companies like your own, we believe that dimensional modeling is absolutely critical to a successful DW/BI initiative.
Dimensional modeling also has emerged as the leading architecture for building integrated DW/BI systems. When you use the conformed dimensions and conformed facts of a set of dimensional models, you have a practical and predictable framework for incrementally building complex DW/BI systems that are inherently distributed.
For all that has changed in our industry, the core dimensional modeling techniques that Ralph Kimball published 17 years ago have withstood the test of time. Concepts such as conformed dimensions, slowly changing dimensions, heterogeneous products, factless fact tables, and the enterprise data warehouse bus matrix continue to be discussed in design workshops around the globe. The original concepts have been embellished and enhanced by new and complementary techniques. We decided to publish this third edition of Kimball's seminal work because we felt that it would be useful to summarize our collective dimensional modeling experience under a single cover. We have each focused exclusively on decision support, data warehousing, and business intelligence for more than three decades. We want to share the dimensional modeling patterns that have emerged repeatedly during the course of our careers. This book is loaded with specific, practical design recommendations based on real-world scenarios.
The goal of this book is to provide a one-stop shop for dimensional modeling techniques. True to its title, it is a toolkit of dimensional design principles and techniques. We address the needs of those just starting in dimensional DW/BI and we describe advanced concepts for those of you who have been at this a while. We believe that this book stands alone in its depth of coverage on the topic of dimensional modeling. It's the definitive guide.
Intended Audience
This book is intended for data warehouse and business intelligence designers, implementers, and managers. In addition, business analysts and data stewards who are active participants in a DW/BI initiative will find the content useful.
Even if you're not directly responsible for the dimensional model, we believe it is important for all members of a project team to be comfortable with dimensional modeling concepts. The dimensional model has an impact on most aspects of a DW/BI implementation, beginning with the translation of business requirements, through the extract, transformation and load (ETL) processes, and finally, to the unveiling of a data warehouse through business intelligence applications. Due to the broad implications, you need to be conversant in dimensional modeling regardless of whether you are responsible primarily for project management, business analysis, data architecture, database design, ETL, BI applications, or education and support. We've written this book so it is accessible to a broad audience.
For those of you who have read the earlier editions of this book, some of the familiar case studies will reappear in this edition; however, they have been updated significantly and fleshed out with richer content, including sample enterprise data warehouse bus matrices for nearly every case study. We have developed vignettes for new subject areas, including big data analytics.
The content in this book is somewhat technical. We primarily discuss dimensional modeling in the context of a relational database with nuances for online analytical processing (OLAP) cubes noted where appropriate. We presume you have basic knowledge of relational database concepts such as tables, rows, keys, and joins. Given we will be discussing dimensional models in a nondenominational manner, we won't dive into specific physical design and tuning guidance for any given database management systems.
Chapter Preview
The book is organized around a series of business vignettes or case studies. We believe developing the design techniques by example is an extremely effective approach because it allows us to share very tangible guidance and the benefits of real world experience. Although not intended to be full-scale application or industry solutions, these examples serve as a framework to discuss the patterns that emerge in dimensional modeling. In our experience, it is often easier to grasp the main elements of a design technique by stepping away from the all-too-familiar complexities of one's own business. Readers of the earlier editions have responded very favorably to this approach.
Be forewarned that we deviate from the case study approach in Chapter 2: Kimball Dimensional Modeling Techniques Overview. Given the broad industry acceptance of the dimensional modeling techniques invented by the Kimball Group, we have consolidated the official listing of our techniques, along with concise descriptions and pointers to more detailed coverage and illustrations of these techniques in subsequent chapters. Although not intended to be read from start to finish like the other chapters, we feel this technique-centric chapter is a useful reference and can even serve as a professional checklist for DW/BI designers.
With the exception of Chapter 2, the other chapters of this book build on one another. We start with basic concepts and introduce more advanced content as the book unfolds. The chapters should be read in order by every reader. For example, it might be difficult to comprehend Chapter 16: Insurance, unless you have read the preceding chapters on retailing, procurement, order management, and customer relationship management.
Those of you who have read the last edition may be tempted to skip the first few chapters. Although some of the early fact and dimension grounding may be familiar turf, we don't want you to sprint too far ahead. You'll miss out on updates to fundamental concepts if you skip ahead too quickly.
Next page