Springer Praxis Books Space Exploration
More information about this series at http://www.springer.com/series/4138
Manfred Dutch von Ehrenfried
From Cave Man to Cave Martian Living in Caves on the Earth, Moon and Mars
Manfred Dutch von Ehrenfried
Leander, TX, USA
Springer Praxis Books Space Exploration
ISBN 978-3-030-05407-6 e-ISBN 978-3-030-05408-3
https://doi.org/10.1007/978-3-030-05408-3
Library of Congress Control Number: 2019930634
Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Cover design: Jim Wilkie. Cover Images used under license from Shutterstock.com .
Project Editor: David M. Harland
This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Hole in Mars. Art by Ron Miller, 2014.
Dedication
This book is dedicated to all those scientists and students who have gotten down and dirty crawling around caves and lava tubes seeking life and understanding of the subterranean world. Call them cavers, spelunkers, geologists, biologist, or scientists, they are the ones looking for knowledge and understanding. Hopefully, some of that knowledge will help future astronauts crawling around the Moon and Mars. Just as the Apollo astronauts walked around sites ranging from Hawaii to Iceland studying geology half a century ago, future crews will do the same thing one day. In fact, this book describes what some of the ESA astronauts are doing now; getting down and dirty in caves and lava tubes conducting analog studies to benefit future astronauts on the Moon and Mars.
This book is also dedicated to the hundreds of scientists, engineers, and mission planners defining the next steps back to the Moon and the first steps to Mars and its small moonlets. Hopefully, they will conduct the initial studies of precursor missions as well as the grand missions that seem to drive the imagination. My previous book, Exploring the Martian Moons: A Human Mission to Deimos and Phobos , defined a precursor mission to the satellites of Mars. Likewise, this book describes a precursor mission to the Moon and to Mars; but one that utilizes the natural environment for protection rather than solely relying upon extensive and costly Made on Earth resources.
This book is also dedicated to those people in a position to guide NASA in its planning; be they members of the National Space Council, legislators, politicians, administrators, or advisory councils. As the details are worked out by the various NASA working groups, there are others that guide the space policy.
If indeed the next humans to go back to the Moon will be approximately in the year 2023 and to Mars in 2033, then those lunar astronauts are currently aged about 30 and the Martian astronauts are about 25; and neither group has been selected yet. If the missions slip, they could be even younger now. They actually could be reading this book in the future. If so, then my thoughts will have taken the ride with them. That would make me very happy, because I knew I would get there one way or another!
Foreword
We were at Lofthellir in Iceland. The entrance to the lava tube was a circular hole in the ground, approximately 20 meters across. It was in the middle of a young lava flow, with volcanoes in the distance but none immediately nearby. Using a ladder, we climbed down into the pit to its sandy floor. Below the mounds of windblown sand were large blocks of rock which had fallen when the roof of the lava tube collapsed and created the skylight that now served as its entrance.
Beneath the skylight, the lava tube extended in two directions. The darkness beyond the twilight zone in either direction looked ominous. As we made our way into the cave in its upstream direction, the passage quickly narrowed from 20 meters to about 1 meter. This lava tube was no subway tunnel. Instead, over its accessible length of 200 meters it would prove to be a 3D maze of crawl spaces, narrows, attics, cellars, ledges, ramps, and cavernous chambers.
But the challenge of squeezing through was amply rewarded. Soon after entering the darkness, the beams of our helmet lamps caught intensely bright reflections. We had encountered ice. Massive Ice! Not just veneers on the walls, and icicles dangling from the ceiling, or ice stalagmites rising from the floor, but entire underground mini-glaciers, with accumulation, ablation and melt zones, lateral moraines, and terminal aprons. This was the stuff of Jules Verne.
It is difficult to describe the awe, thrill, and wonder of caving, particularly inside lava tubes. But lava tubes filled with massive ice add an entirely new dimension to the whole experience. More importantly, had we been on the Moon or Mars, such ice would have been a holy grail. Finding massive ice in a cave could potentially mean having readily accessible water for hydration, fuel production (by breaking down H 2 O into hydrogen and oxygen), cleaning, diluting, irrigation, heat exchange, and more. In the case of Mars, finding ice might also mean the possibility of finding extant alien Life.
We know for certain today, thanks to remote-sensing imaging from orbital spacecraft, that there are caves on the Moon, and also on Mars. Many if not most of these caves are lava tubes formed in volcanic lava fields or in impact-melt lava sheets.
Earlier this year, after examining hundreds of images of the Moons polar regions, both north and south, taken by NASAs Lunar Reconnaissance Orbiter (LRO), I reported finding candidate skylights and associated lava tubes in the impact-melt deposits within Philolaus crater, a 70-km-wide impact structure located just 500 km from the north pole of the Moon. If confirmed, these features would be the highest latitude caves known on the Moon. They would be at such a high latitude that the Suns grazing rays would never enter the caves and warm up the rocks on their floor. Instead, the caves would remain in perpetual, complete darkness, the underground equivalent of the permanently shadowed regions at the actual lunar poles. The Philolaus caves would be so cold that, if water were available, it could be cold-trapped as ice in these caves and remain stable for eons.