ALSO BY ROBERT M. HAZEN
Science Matters
R OBERT M. H AZEN is author of more than 350 articles and 20 books on earth science, materials science, the origins of life, history, and music. A fellow of the American Association for the Advancement of Science, he received the Mineralogical Society of America Award, the Ipatief Prize, the ASCAP-Deems Taylor Award, and other awards for his research and writing. Hazen is a researcher at the Carnegie Institution of Washington and is Robinson Professor of Earth Sciences at George Mason University. His recent books include Genesis: The Scientific Quest for Lifes Origins and The Sciences: An Integrated Approach (with James Trefil).
J AMES T REFIL , Robinson Professor of Physics at George Mason University, is the author of over 40 books and 100 articles in professional journals. He is a fellow of the American Physical Society, the American Association for the Advancement of Science, and the World Economic Forum. He is the recipient of the Andrew Gemant Award (American Institute of Physics), the Westinghouse and Subaru Awards (American Association for the Advancement of Science), and the 2008 Science Writing Award (American Physical Society). His most recent books are Why Science and The Sciences: An Integrated Approach (with Robert Hazen).
CHAPTER ONE
Knowing
Y OUR LIFE IS FILLED with routineyou set your alarm clock at night, take a shower in the morning, brush your teeth after breakfast, pay your bills on time, and fasten your seat belt. With each of these actions and a hundred others every day you acknowledge the power of predictability. If you dont set the alarm youll probably be late for work or school. If you dont take a shower youll probably smell. If you dont fasten your seat belt and then get into a freeway accident you may die.
We all seek order to deal with lifes uncertainties. We look for patterns to help us cope. Scientists do the same thing. They constantly examine nature, guided by one overarching principle:
The universe is regular and predictable.
The universe is not random. The sun comes up every morning, the stars sweep across the sky at night. The universe moves in regular, predictable ways. Human beings can grasp the regularities of the universe and can even uncover the basic, simple laws that produce them. We call this activity science.
WAYS OF KNOWING
Science is one way of knowing about the world. The unspoken assumption behind the scientific endeavor is that general laws, discoverable by the human mind, exist and govern everything in the physical world. In its most advanced form, science is written in the language of mathematics, and therefore is not always easily accessible to the general public. But, like any other language, the language of science can be translated into simple English. When this is done, the beauty and simplicity of the great scientific laws can be shared by everyone.
Science is not the only way, nor always the best way, to gain an understanding of the world in which we find ourselves. Religion and philosophy help us come to grips with the meaning of life without the need for experimentation or mathematics, while art, music, and literature provide us with a kind of aesthetic, non-quantitative knowledge. You dont need calculus to tell you whether a symphony or a poem has meaning for you. Science complements these other ways of knowing, providing us with insights about a different aspect of the universe.
The Regularity of Nature
Our ancestors perceived the universe in ways that sometimes seem very strange to us. For all but the past few hundred years of human existence the universe was viewed by most people as a place without deep order or rules, governed by the whims of the gods or even by chance. By noting the daily movements of objects in the sky, however, our ancestors got their first hints that some kind of order and regularity might exist in nature. The position of the sun, the phases of the moon, and the dominant constellations of stars cycled over the years, decades, and centuries with unerring regularity. Whatever governs its motion, the fact is that the sun does come up every morning.
Most historians of science point to the need for a reliable calendar to regulate agricultural activity as the impetus for learning about what we now call astronomy. Early astronomy provided information about when to plant crops and gave humans their first formal method of recording the passage of time. Stonehenge, the 4,000-year-old ring of stones in southern Britain, is perhaps the best-known monument to the discovery of regularity and predictability in the world we inhabit. The great markers of Stonehenge point to the spots on the horizon where the sun rises at the solstices and equinoxesthe dates we still use to mark the beginnings of the seasons. The stones may even have been used to predict eclipses. The existence of Stonehenge, built by people without writing, bears silent testimony both to the regularity of nature and to the ability of the human mind to see behind immediate appearances and discover deeper meanings in events.
Stonehenge relied on the regular and predictable movements of sun, moon, and stars to serve its builders as a calendar. At the solstices and equinoxes, the light of the sun or moon aligns with the stones, and so documents the passage of time.
The Invention of Science
Astronomy was the first science. Throughout history some of the best minds produced by the human race have pondered the meaning of the celestial display. Most of the resulting theories shared a common propertythey all assumed that in some way Earth was special, and that what happened in the heavens had no relevance to phenomena on Earth. In one important version of the universe, for example, the stars and the planets turned eternally on crystal spheres, and their motion had nothing to do with mundane events like the fall of an apple in an orchard. People who believed that the universe was built this way produced a large body of accurate observations of the positions of heavenly bodies, but astronomers were divorced from craftsmen and artisans who were doing different things for the development of science.
While the astronomers were gazing into the heavens, other men and women, equally ingenious, were trying to understand the way things operated on Earth. Their motivation was practical: they studied the properties of heated metals because they wanted to develop stronger alloys, they studied the flow of fluids because they wanted to build canals, they experimented with different combinations of ingredients to make better-tasting food and more effective medicines, and so on. They never seemed to think that the prosaic tasks in which they were engaged had anything to do with the stars and planets.