• Complain

Afolabi Ibukun Tolulope - Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases

Here you can read online Afolabi Ibukun Tolulope - Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2022, publisher: Apress, genre: Business. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

Afolabi Ibukun Tolulope Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases
  • Book:
    Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases
  • Author:
  • Publisher:
    Apress
  • Genre:
  • Year:
    2022
  • Rating:
    3 / 5
  • Favourites:
    Add to favourites
  • Your mark:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

Master the tricks and techniques of business analytics consulting, specifically applicable to small-to-medium businesses (SMEs). Written to help you hone your business analytics skills, this book applies data science techniques to help solve problems and improve upon many aspects of a business operations.
SMEs are looking for ways to use data science and analytics, and this need is becoming increasingly pressing with the ongoing digital revolution. The topics covered in the books will help to provide the knowledge leverage needed for implementing data science in small business. The demand of small business for data analytics are in conjunction with the growing number of freelance data science consulting opportunities; hence this book will provide insight on how to navigate this new terrain.
This book uses a do-it-yourself approach to analytics and introduces tools that are easily available online and are non-programming based. Data science will allow SMEs to understand their customer loyalty, market segmentation, sales and revenue increase etc. more clearly. Data Science and Analytics for SMEs is particularly focused on small businesses and explores the analytics and data that can help them succeed further in their business.
What Youll Learn
  • Create and measure the success of their analytics project
  • Start your business analytics consulting career
  • Use solutions taught in the book in practical uses cases and problems

Who This Book Is For
Business analytics enthusiasts who are not particularly programming inclined, small business owners and data science consultants, data science and business students, and SME (small-to-medium enterprise) analysts

Afolabi Ibukun Tolulope: author's other books


Who wrote Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases? Find out the surname, the name of the author of the book and a list of all author's works by series.

Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make

Data Science and Analytics for SMEs Consulting Tools Practical Use - photo 1Data Science andAnalytics for SMEsConsulting, Tools,Practical Use CasesAfolabi Ibukun TolulopeData Science and Analytics for SMEs: Consulting, Tools, PracticalUse Cases Afolabi Ibukun Tolulope London, United Kingdom ISBN-13 (pbk): 978-1-4842-8669-2 ISBN-13 (electronic): 978-1-4842-8670-8 https://doi.org/10.1007/978-1-4842-8670-8 Copyright 2022 by Afolabi Ibukun Tolulope This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.

The publisher makes no warranty, express or implied, with respect to the material contained herein. Managing Director, Apress Media LLC: Welmoed Spahr Acquisitions Editor: Shiva Ramachandran Development Editor: James Markham Coordinating Editor: Jessica Vakili Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales. Printed on acid-free paper Table of Contents About the Author ix About the Technical Reviewer xi Acknowledgments xiii Preface xv Chapter 1: Introduction1 1.1 Data Science ...................................................................................................1 1.2 Data Science for Business ..............................................................................2 1.3 Business Analytics Journey ............................................................................4 Events in Real Life and Description .................................................................5 Capturing the Data...........................................................................................9 Accessible Location and Storage ..................................................................10 Extracting Data for Analysis ..........................................................................10 Data Analytics ................................................................................................12 Summarize and Interpret Results ..................................................................14 Presentation ..................................................................................................15 Recommendations, Strategies, and Plan .......................................................15 Implementation .............................................................................................16 1.4 Small and Medium Enterprises (SME) ...........................................................16 1.5 Business Analytics in Small Business ...........................................................17 1.6 Types of Analytics Problems in SME .............................................................19 iii Table of ConTenTs 1.7 Analytics Tools for SMES ...............................................................................21 1.8 Road Map to This Book .................................................................................21 Using RapidMiner Studio ...............................................................................23 Using Gephi ...................................................................................................24 1.9 Problems .......................................................................................................25 1.10 References ..................................................................................................26 Chapter 2: Data for Analysis in Small Business 29 2.1 Source of Data ..............................................................................................29 Data Privacy ...................................................................................................33 2.2 Data Quality and Integrity .............................................................................34 2.3 Data Governance ...........................................................................................36 2.4 Data Preparation ...........................................................................................37 Summary Statistics .......................................................................................38 Missing Data ..................................................................................................43 Data Cleaning Outliers ................................................................................47 Normalization and Categorical Variables .......................................................51 Handling Categorical Variables ......................................................................51 2.5 Data Visualization ..........................................................................................53 2.6 Problems .......................................................................................................55 2.7 References ....................................................................................................55 Chapter 3: Business Analytics Consulting 59 3.1 Business Analytics Consulting ......................................................................59 3.2 Managing Analytics Project ...........................................................................62 3.3 Success Metrics in Analytics Project ............................................................65 3.4 Billing the Analytics Project ..........................................................................66 3.5 References ....................................................................................................69 iv Table of ConTenTs Chapter 4: Business Analytics Consulting Phases 71 4.1 Proposal and Initial Analysis .........................................................................71 4.2 Pre-engagement Phase ................................................................................75 4.3 Engagement Phase .......................................................................................78 4.4 Post-Engagement Phase ...............................................................................80 4.5 Problems .......................................................................................................81 4.6 References ....................................................................................................82 Chapter 5: Descriptive Analytics Tools 83 5.1 Introduction ...................................................................................................83 5.2 Bar Chart .......................................................................................................84 5.3 Histogram......................................................................................................87 5.4 Line Graphs ...................................................................................................90 5.5 Boxplots ........................................................................................................91 5.6 Scatter Plots ..................................................................................................93 5.7 Packed Bubble Charts ...................................................................................96 5.8 Treemaps.......................................................................................................97 5.9 Heat Maps .....................................................................................................98 5.10 Geographical Maps ...................................................................................100 5.11 A Practical Business Problem I (Simple Descriptive Analytics) .................101 5.12 Problems ...................................................................................................109 5.13 References ................................................................................................111 Chapter 6: Predicting Numerical Outcomes 113 6.1 Introduction .................................................................................................113 6.2 Evaluating Prediction Models ......................................................................115 6.3 Practical Business Problem II (Sales Prediction) ........................................117 6.4 Multiple Linear Regression .........................................................................126 v Table of ConTenTs 6.5 Regression Trees .........................................................................................135 6.6 Neural Network (Prediction) ........................................................................143 6.7 Conclusion on Sales Prediction ...................................................................151 6.8 Problems .....................................................................................................152 6.9 References ..................................................................................................153 Chapter 7: Classification Techniques 155 7.1 Classification Models and Evaluation..........................................................155 7.2 Practical Business Problem III (Customer Loyalty) ......................................159 7.3 Neural Network ...........................................................................................164 7.4 Classification Tree .......................................................................................169 7.5 Random Forest and Boosted Trees .............................................................174 7.6 K-Nearest Neighbor ....................................................................................179 7.7 Logistic Regression .....................................................................................187 7.8 Problems .....................................................................................................195 7.9 References ..................................................................................................196 Chapter 8: Advanced Descriptive Analytics 199 8.1 Clustering ....................................................................................................199 8.2 K-Means ......................................................................................................203 8.3 Practical Business Problem IV (Customer Segmentation) ...........................207 8.4 Association Analysis ....................................................................................222 8.5 Network Analysis ........................................................................................231 8.6 Practical Business Problem V (Staff Efficiency) ..........................................253 8.7 Problems .....................................................................................................261 8.8 References ..................................................................................................261 vi Table of ConTenTs Chapter 9: Case Study Part I 265 9.1 SME Ecommerce .........................................................................................265 9.2 Introduction to SME Case Study ..................................................................268 9.3 Initial Analysis .............................................................................................272 9.4 Analytics Approach ......................................................................................274 9.5 Pre-engagement .........................................................................................276 9.6 References ..................................................................................................281 Chapter 10: Case Study Part II 283 10.1 Goal 1: Increase Website Traffic ................................................................283 10.2 Goal 2: Increase Website Sales Revenue ..................................................288 10.3 Problems ...................................................................................................320 10.4 References ................................................................................................321 Data Files 323 Index 327 vii About the Author Afolabi Ibukun is a Data Scientist and is currently an - photo 2

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases»

Look at similar books to Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases»

Discussion, reviews of the book Data Science and Analytics for SMEs: Consulting, Tools, Practical Use Cases and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.