• Complain

Dan Toomey [Dan Toomey] - R for Data Science

Here you can read online Dan Toomey [Dan Toomey] - R for Data Science full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2014, publisher: Packt Publishing, genre: Children. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

Dan Toomey [Dan Toomey] R for Data Science

R for Data Science: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "R for Data Science" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

Learn and explore the fundamentals of data science with R

In Detail

R is a powerful, open source, functional programming language. It can be used for a wide range of programming tasks and is best suited to produce data and visual analytics through customizable scripts and commands.

The purpose of the book is to explore the core topics that data scientists are interested in. This book draws from a wide variety of data sources and evaluates this data using existing publicly available R functions and packages. In many cases, the resultant data can be displayed in a graphical form that is more intuitively understood. You will also learn about the often needed and frequently used analysis techniques in the industry.

By the end of the book, you will know how to go about adopting a range of data science techniques with R.

What You Will Learn

  • Develop, execute, and modify R scripts
  • Find, install, and use third-party R packages
  • Organize your data to get the best results
  • Produce graphical displays of your results, including 3D visualizations
  • Perform statistical analyses that you can use all the time
  • Understand the trade-offs between different approaches to problems
  • Be comfortable with trying features to fine-tune your results
  • Adopt and learn data science with R in a practical tutorial format
  • Explore concepts such as data mining, data analysis, data visualization, and machine learning using R

Downloading the example code for this book. You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Dan Toomey [Dan Toomey]: author's other books


Who wrote R for Data Science? Find out the surname, the name of the author of the book and a list of all author's works by series.

R for Data Science — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "R for Data Science" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Index
A
  • abline function /
  • abline function, parameters
    • a /
    • b /
    • untf /
    • h /
    • v /
    • coef /
    • reg /
  • acf function
    • used, for creating correlogram /
  • acf function, parameters
    • x /
    • lag.max /
    • type /
    • plot /
    • na.action /
    • demean /
  • AdaBoost /
  • ada package /
  • affinity propagation clustering
    • about /
  • airport data, Washington University survey
    • URL /
  • anomaly detection
    • about /
    • outliers, displaying /
    • anomalies, calculating /
    • usage /
    • example /
  • apcluster function
    • about /
  • apcluster package
    • about /
  • apriori
    • about /
    • usage /
    • example /
  • apriori rules library
    • data parameter /
    • parameter /
    • appearance parameter /
    • control parameter /
  • ARIMA
    • about /
    • using /
    • used, for automated forecasting /
  • arima function, parameters
    • x /
    • order /
    • seasonal /
    • /
  • arulesNBMiner
    • about /
    • usage /
    • example /
  • association rules
    • about /
    • support /
    • confidence /
    • lift /
    • apriori rules library, using /
    • usage /
    • example /
  • automatic forecasting packages
    • about /
    • forecast /
    • TTR /
  • Auto MPG dataset
    • URL /
B
  • bar3d function
    • about /
  • bar3d function, parameters
    • data /
    • row.labels, col.labels /
    • filename /
    • type /
  • bar chart
    • producing /
    • producing, qplot function used /
  • bar charts
    • about /
  • bar plot
    • about /
  • barplot function
    • about /
    • usage /
  • barplot function, parameters
    • height /
    • width /
    • space /
    • names.arg /
    • legend.text /
  • Bayesian information
    • cluster, selecting based on /
  • Bayesian learning
    • about /
  • big.matrix function, parameters
    • nrow, ncol /
    • type /
    • init /
    • dimnames /
    • separated /
    • backingfile /
    • backingpath /
    • descriptorfile /
    • binarydescriptor /
    • shared /
  • Big Data, R
    • concerns /
    • pbdR project /
    • bigmemory package /
  • bigmemory package
    • about /
  • bioconductor.org /
  • bivariate binning display /
  • blind signal separation /
  • Box.test function, parameters
    • x /
    • lag /
    • type /
    • fitdf /
  • boxplot function
    • about /
  • Box test
    • using /
  • build phase, K-medoids clustering
    • about /
  • bw function
    • x parameter /
    • nb parameter /
    • lower, upper parameter /
    • method parameter /
    • tol parameter /
C
  • calinski criterion graph
    • about /
  • caret package /
    • about /
  • car package
    • about /
  • cascadeKM function
    • about /
  • cascadeKM function, parameters
    • data /
    • inf.gr /
    • sup.gr /
    • iter /
    • criterion /
  • chart.Correlation function, parameters
    • R /
    • histogram /
    • method /
  • chemometrics
    • about /
    • problems /
  • chemometrics package
    • about /
  • classIn package /
  • class package /
  • cloud3d function
    • about /
    • parameters /
  • cloud function
    • about /
    • used, for producing 3D scatterplot /
  • clue package /
  • clusGap function
    • about /
  • clusGap function, parameters
    • x /
    • FUNcluster /
    • K.max /
    • B /
    • verbose /
  • cluster
    • selecting, based on Bayesian information /
  • cluster analysis
    • K-means clustering /
    • K-medoids clustering /
    • hierarchical clustering /
    • expectation maximization (EM) /
    • density estimation /
    • about /
  • cluster analysis, model
    • connectivity /
    • partitioning /
    • distribution models /
    • density /
  • connectivity model
    • about /
  • copula package
    • about /
  • cor.test function, parameters
    • x /
    • y /
    • alternative /
    • method /
    • exact /
    • continuity /
  • cor function
    • used, for performing correlation /
  • cor function, parameters
    • x /
    • y /
    • use /
    • method /
  • corpus
    • about /
    • creating /
    • text, converting to lower case /
    • punctuation, removing /
    • numbers, removing /
    • words, removing /
    • whitespaces, removing /
    • word stems /
    • document term matrix /
    • VectorSource, using /
  • correlation
    • about /
    • performing, cor function used /
    • example /
  • correlation functionality
    • packages /
  • correlations
    • visualizing, corrgram() function used /
  • correlogram
    • creating, acf function used /
  • corrgram() function
    • used, for visualizing correlations /
  • corrgram tool
    • about /
  • Cortona
    • about /
  • covariance
    • measuring, cov function used /
  • cov function
    • used, for measuring covariance /
  • cpairs function
    • used, for plotting matrix data /
  • createDataPartition function /
D
  • 3D graphics
    • generating /
  • 3D plotting functionality
    • packages /
  • 3D scatterplot
    • producing, cloud function used /
  • data
    • patterns, determining /
  • data partitioning
    • about /
  • dataset
    • about /
  • DBSCAN function
    • about /
  • decision tree
    • about /
  • decision trees /
  • decompose function
    • about /
  • density estimation
    • about /
    • Parzen windows /
    • vector quantization /
    • histograms /
    • usage /
    • example /
  • density function
    • about /
    • x parameter /
    • bw parameter /
    • adjust parameter /
    • kernel parameter /
    • weights parameter /
    • window parameter /
    • width parameter /
    • give.Rkern parameter /
    • N parameter /
    • from, to parameter /
    • na.rm parameter /
  • density model
    • about /
  • density scatter plots
    • about /
  • distribution models
    • about /
  • DMwR package
    • about /
  • document term matrix
    • about /
E
  • e1071 package /
    • about /
  • ECControl, parameter
    • sort /
    • verbose /
  • Eclat
    • about /
    • usage /
    • used, for finding similarities in adult behavior /
    • frequent items, finding in dataset /
    • example /
  • eclat function, parameters
    • data /
    • parameter /
    • control /
  • ECParameters
    • support /
    • minlen /
    • target /
  • elbow /
Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «R for Data Science»

Look at similar books to R for Data Science. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «R for Data Science»

Discussion, reviews of the book R for Data Science and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.