Yuxi (Hayden) Liu - PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python
Here you can read online Yuxi (Hayden) Liu - PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2019, publisher: Packt Publishing, genre: Children. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:
Romance novel
Science fiction
Adventure
Detective
Science
History
Home and family
Prose
Art
Politics
Computer
Non-fiction
Religion
Business
Children
Humor
Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.
- Book:PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python
- Author:
- Publisher:Packt Publishing
- Genre:
- Year:2019
- Rating:3 / 5
- Favourites:Add to favourites
- Your mark:
PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python: summary, description and annotation
We offer to read an annotation, description, summary or preface (depends on what the author of the book "PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.
Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes
Key Features- Use PyTorch 1.x to design and build self-learning artificial intelligence (AI) models
- Implement RL algorithms to solve control and optimization challenges faced by data scientists today
- Apply modern RL libraries to simulate a controlled environment for your projects
Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.
With this book, youll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. Youll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. Youll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, youll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.
By the end of this book, youll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
What you will learn- Use Q-learning and the stateactionrewardstateaction (SARSA) algorithm to solve various Gridworld problems
- Develop a multi-armed bandit algorithm to optimize display advertising
- Scale up learning and control processes using Deep Q-Networks
- Simulate Markov Decision Processes, OpenAI Gym environments, and other common control problems
- Select and build RL models, evaluate their performance, and optimize and deploy them
- Use policy gradient methods to solve continuous RL problems
Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.
Table of Contents- Getting started with reinforcement learning and PyTorch
- Markov Decision Process and Dynamic Programming
- Monte Carlo Methods for making numerical estimations
- Temporal Difference and Q-Learning
- Solving Multi Armed Bandit problems
- Scaling up Learning with Function Approximation
- Deep Q-Networks in Action
- Implementing Policy Gradients and Policy Optimization
- Capstone Project: Playing Flappy Bird with DQN
Yuxi (Hayden) Liu: author's other books
Who wrote PyTorch 1.x Reinforcement Learning Cookbook: Over 60 recipes to design, develop, and deploy self-learning AI models using Python? Find out the surname, the name of the author of the book and a list of all author's works by series.