• Complain

Rajdeep Chakraborty (editor) - Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)

Here you can read online Rajdeep Chakraborty (editor) - Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems) full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2021, publisher: Wiley-Scrivener, genre: Politics. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

Rajdeep Chakraborty (editor) Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)

Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems): summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY

This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions

The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively.

Audience

Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.

Rajdeep Chakraborty (editor): author's other books


Who wrote Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)? Find out the surname, the name of the author of the book and a list of all author's works by series.

Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems) — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Scrivener Publishing 100 Cummings Center Suite 541J Beverly MA 01915-6106 - photo 1

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Advances in Learning Analytics for Intelligent Cloud-IoT Systems

Series Editor: Dr. Souvik Pal and Dr. Dac-Nhuong Le

The role of adaptation, learning analytics, computational Intelligence, and data analytics in the field of cloud-IoT systems is becoming increasingly essential and intertwined. The capability of an intelligent system depends on various self-decision-making algorithms in IoT devices. IoT-based smart systems generate a large amount of data (big data) that cannot be processed by traditional data processing algorithms and applications. Hence, this book series involves different computational methods incorporated within the system with the help of analytics reasoning and sense-making in big data, which is centered in the cloud and IoT-enabled environments. The series publishes volumes that are empirical studies, theoretical and numerical analysis, and novel research findings.

Submission to the series:

Please send proposals to Dr. Souvik Pal, Department of Computer Science and Engineering, Global Institute of Management and Technology, Krishna Nagar, West Bengal, India.

E-mail:

Publishers at Scrivener

Martin Scrivener ()

Phillip Carmical ()

Machine Learning Techniques and Analytics for Cloud Security

Edited by

Rajdeep Chakraborty

Anupam Ghosh

and

Jyotsna Kumar Mandal

This edition first published 2022 by John Wiley Sons Inc 111 River Street - photo 2

This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

2022 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-76225-6

Cover images: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface

Our objective in writing this book was to provide the reader with an in-depth knowledge of how to integrate machine learning (ML) approaches to meet various analytical issues in cloud security deemed necessary due to the advancement of IoT networks. Although one of the ways to achieve cloud security is by using ML, the technique has long-standing challenges that require methodological and theoretical approaches. Therefore, because the conventional cryptographic approach is less frequently applied in resource-constrained devices, the ML approach may be effectively used in providing security in the constantly growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues for effective intrusion detection and zero-knowledge authentication systems. Moreover, these algorithms can also be used in applications and for much more, including measuring passive attacks and designing protocols and privacy systems. This book contains case studies/projects for implementing some security features based on ML algorithms and analytics. It will provide learning paradigms for the field of artificial intelligence and the deep learning community, with related datasets to help delve deeper into ML for cloud security.

This book is organized into five parts. As the entire book is based on ML techniques, the three chapters contained in Part I: Conceptual Aspects of Cloud and Applications of Machine Learning, describe cloud environments and ML methods and techniques. The seven chapters in Part II: Cloud Security Systems Using Machine Learning Techniques, describe ML algorithms and techniques which are hard coded and implemented for providing various security aspects of cloud environments. The four chapters of Part III: Cloud Security Analysis Using Machine Learning Techniques, present some of the recent studies and surveys of ML techniques and analytics for providing cloud security. The next three chapters in Part IV: Case Studies Focused on Cloud Security, are unique to this book as they contain three case studies of three cloud products from a security perspective. These three products are mainly in the domains of public cloud, private cloud and hybrid cloud. Finally, the two chapters in Part V: Policy Aspects, pertain to policy aspects related to the cloud environment and cloud security using ML techniques and analytics. Each of the chapters mentioned above are individually highlighted chapter by chapter below.

Part I: Conceptual Aspects of Cloud and Applications of Machine Learning

  • begins with an introduction to various parameters of cloud such as scalability, cost, speed, reliability, performance and security. Next, hybrid cloud is discussed in detail along with cloud architecture and how it functions. A brief comparison of various cloud providers is given next. After the use of cloud in education, finance, etc., is described, the chapter concludes with a discussion of security aspects of a cloud environment.
  • discusses how to recognize differentially expressed glycan structure of H1N1 virus using unsupervised learning framework. This chapter gives the reader a better understanding of machine learning (ML) and analytics. Next, the detailed workings of an ML methodology are presented along with a flowchart. The result part of this chapter contains the analytics for the ML technique.
  • presents a hybrid model of logistic regression supported by PC-LR to select cancer mediating genes. This is another good chapter to help better understand ML techniques and analytics. It provides the details of an ML learning methodology and algorithms with results and analysis using datasets.
Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)»

Look at similar books to Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems). We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)»

Discussion, reviews of the book Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems) and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.