• Complain

Bonaccorso Giuseppe - Python: Advanced Guide to Artificial Intelligence

Here you can read online Bonaccorso Giuseppe - Python: Advanced Guide to Artificial Intelligence full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2018;2019, publisher: Packt Publishing, genre: Children. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

No cover

Python: Advanced Guide to Artificial Intelligence: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Python: Advanced Guide to Artificial Intelligence" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. Youll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. Youll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, youll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. Youll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, youll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some un ...

Bonaccorso Giuseppe: author's other books


Who wrote Python: Advanced Guide to Artificial Intelligence? Find out the surname, the name of the author of the book and a list of all author's works by series.

Python: Advanced Guide to Artificial Intelligence — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Python: Advanced Guide to Artificial Intelligence" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Python Advanced Guide to Artificial Intelligence Expert machine learning - photo 1
Python: Advanced Guide to Artificial Intelligence
Expert machine learning systems and intelligent agents using Python
Giuseppe Bonaccorso
Armando Fandango
Rajalingappaa Shanmugamani

BIRMINGHAM - MUMBAI Python Advanced Guideto Artificial Intelligence - photo 2

BIRMINGHAM - MUMBAI
Python: Advanced Guideto Artificial Intelligence

Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2018

Production reference: 1191218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-721-1

www.packtpub.com

maptio Mapt is an online digital library that gives you full access to over - photo 3
mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?
  • Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

  • Improve your learning with Skill Plans built especially for you

  • Get a free eBook or video every month

  • Mapt is fully searchable

  • Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Contributors
About the authors

Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning solution design, management, and delivery. He got his MScEng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and NLP.

Armando Fandango is an accomplished technologist with hands-on capabilities and senior executive level experience with startups and large companies globally. Armando is spearheading Epic Engineering and Consulting Group as Chief Data Scientist. His work spans across diverse industries including FinTech, Banking, BioInformatics, Genomics, AdTech, Utilities and Infrastructure, Traffic and Transportation, Energy, Human Resource, and Entertainment.

Armando has worked for more than ten years in projects involving Predictive Analytics, Data Science, Machine Learning, Big Data, Product Engineering and High-Performance Computing. His research interests span across machine learning, deep learning, algorithmic game theory and scientific computing. Armando has authored book titled Python Data Analysis - Second Edition and published research in international journals and conferences.

Rajalingappaa Shanmugamani is currently working as a Engineering Manager for a Deep learning team at Kairos. Previously, he worked as a Senior Machine Learning Developer at SAP, Singapore and worked at various startups in developing machine learning products. He has a Masters from Indian Institute of Technology Madras. He has published articles in peer-reviewed journals and conferences and applied for few patents in the area of machine learning. In his spare time, he coaches programming and machine learning to school students and engineers.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Preface

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries.

You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more.

By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems

This Learning Path includes content from the following Packt products:

  • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso
  • Mastering TensorFlow 1.x by Armando Fandango
  • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Who this book is for

This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model.
You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

What this book covers

, Machine Learning Model Fundamentals, explains the most important theoretical concepts regarding machine learning models, including bias, variance, overfitting, underfitting, data normalization, and cost functions. It can be skipped by those readers with a strong knowledge of these concepts.

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Python: Advanced Guide to Artificial Intelligence»

Look at similar books to Python: Advanced Guide to Artificial Intelligence. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Python: Advanced Guide to Artificial Intelligence»

Discussion, reviews of the book Python: Advanced Guide to Artificial Intelligence and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.