• Complain

Mohit Sewak - Practical Convolutional Neural Networks: Implement advanced deep learning models using Python

Here you can read online Mohit Sewak - Practical Convolutional Neural Networks: Implement advanced deep learning models using Python full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2018, publisher: Packt Publishing - ebooks Account, genre: Computer. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

No cover
  • Book:
    Practical Convolutional Neural Networks: Implement advanced deep learning models using Python
  • Author:
  • Publisher:
    Packt Publishing - ebooks Account
  • Genre:
  • Year:
    2018
  • Rating:
    4 / 5
  • Favourites:
    Add to favourites
  • Your mark:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Practical Convolutional Neural Networks: Implement advanced deep learning models using Python: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Practical Convolutional Neural Networks: Implement advanced deep learning models using Python" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

One stop guide to implementing award-winning, and cutting-edge CNN architectures

Key Features
  • Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques
  • Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more
  • Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models
Book Description

Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models.

This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.

Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision.

By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets.

What you will learn
  • From CNN basic building blocks to advanced concepts understand practical areas they can be applied to
  • Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it
  • Learn different algorithms that can be applied to Object Detection, and Instance Segmentation
  • Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy
  • Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more
  • Understand the working of generative adversarial networks and how it can create new, unseen images
Who This Book Is For

This book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.

Table of Contents
  1. Deep Neural Networks - Overview
  2. Introduction to Convolutional Neural Networks
  3. Build Your First CNN and Performance Optimization
  4. Popular CNN Models Architectures
  5. Transfer Learning
  6. Autoencoders for CNN
  7. Object Detection with CNN
  8. Generative Adversarial Network
  9. Visual Attention Based CNN

Mohit Sewak: author's other books


Who wrote Practical Convolutional Neural Networks: Implement advanced deep learning models using Python? Find out the surname, the name of the author of the book and a list of all author's works by series.

Practical Convolutional Neural Networks: Implement advanced deep learning models using Python — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Practical Convolutional Neural Networks: Implement advanced deep learning models using Python" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Practical Convolutional Neural Networks Implement advanced deep learning - photo 1
Practical Convolutional Neural Networks
Implement advanced deep learning models using Python
Mohit Sewak
Md. Rezaul Karim
Pradeep Pujari

BIRMINGHAM - MUMBAI Practical Convolutional Neural Networks Copyright 2018 - photo 2

BIRMINGHAM - MUMBAI
Practical Convolutional Neural Networks

Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Vinay Argekar
Content Development Editor: Cheryl Dsa
Technical Editor: Sagar Sawant
Copy Editor: Vikrant Phadke, Safis Editing
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tania Dutta
Production Coordinator: Arvindkumar Gupta

First published: February 2018

Production reference: 1230218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-230-3

www.packtpub.com

maptio Mapt is an online digital library that gives you full access to over - photo 3
mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?
  • Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

  • Improve your learning with Skill Plans built especially for you

  • Get a free eBook or video every month

  • Mapt is fully searchable

  • Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Contributors
About the authors

Mohit Sewak is a senior cognitive data scientist with IBM, and a PhD scholar in AI and CS at BITS Pilani. He holds several patents and publications in AI, deep learning, and machine learning. He has been the lead data scientist for some very successful global AI/ ML software and industry solutions and was earlier engaged in solutioning and research for the Watson Cognitive Commerce product line. He has 14 years of rich experience in architecting and solutioning with TensorFlow, Torch, Caffe, Theano, Keras, Watson, and more.

Md. Rezaul Karim is a research scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a researcher at the Insight Center for Data Analytics, Ireland. He was a lead engineer at Samsung Electronics, Korea.

He has 9 years of R&D experience with C++, Java, R, Scala, and Python. He has published research papers on bioinformatics, big data, and deep learning. He has practical working experience with Spark, Zeppelin, Hadoop, Keras, Scikit-Learn, TensorFlow, Deeplearning4j, MXNet, and H2O.

Pradeep Pujari is machine learning engineer at Walmart Labs and a distinguished member of ACM. His core domain expertise is in information retrieval, machine learning, and natural language processing. In his free time, he loves exploring AI technologies, reading, and mentoring.

About the reviewer

Sumit Pal is a published author with Apress. He has more than 22 years of experience in software, from start-ups to enterprises, and is an independent consultant working with big data, data visualization, and data science. He builds end-to-end data-driven analytic systems.

He has worked for Microsoft (SQLServer), Oracle (OLAP Kernel), and Verizon. He advises clients on their data architectures and build solutions in Spark and Scala. He has spoken at many conferences in North America and Europe and has developed a big data analyst training for Experfy. He has an MS and BS in computer science.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Preface

CNNs are revolutionizing several application domains, such as visual recognition systems, self-driving cars, medical discoveries, innovative e-commerce, and many more. This book gets you started with the building blocks of CNNs, while also guiding you through the best practices for implementing real-life CNN models and solutions. You will learn to create innovative solutions for image and video analytics to solve complex machine learning and computer vision problems.

This book starts with an overview of deep neural networks, with an example of image classification, and walks you through building your first CNN model. You will learn concepts such as transfer learning and autoencoders with CNN that will enable you to build very powerful models, even with limited supervised ( labeled image ) training data.

Later we build upon these learnings to achieve advanced vision-related algorithms and solutions for object detection, instance segmentation, generative (adversarial) networks, image captioning, attention mechanisms, and recurrent attention models for vision.
Besides giving you hands-on experience with the most intriguing vision models and architectures, this book explores cutting-edge and very recent researches in the areas of CNN and computer vision. This enable the user to foresee the future in this field and quick-start their innovation journey using advanced CNN solutions.
By the end of this book, you should be ready to implement advanced, effective, and efficient CNN models in your professional projects or personal initiatives while working on complex images and video datasets.

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Practical Convolutional Neural Networks: Implement advanced deep learning models using Python»

Look at similar books to Practical Convolutional Neural Networks: Implement advanced deep learning models using Python. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Practical Convolutional Neural Networks: Implement advanced deep learning models using Python»

Discussion, reviews of the book Practical Convolutional Neural Networks: Implement advanced deep learning models using Python and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.