Table of Contents
To Paul, Alex, Lauren, Kate, and Tess; for whom ecological
sustainability will be more than words.
Introduction
When I wrote the treatise Water: The Untapped Market back in 1987, I advocated market-based solutions to the governance of expanding global water resource challenges. Actually, as a resource economist, it is more accurate to say that I was enchanted by the potential application of the principles of resource economics to the free market system. As I prophesied over 20 years ago in the introduction to that document,the dynamics of the water industry are changing rapidly in coincidence with the growing problems inherent in a severe imbalance of supply and demand. Given the natural constraints of the hydrologic cycle and the artificial limitations imposed by the degradation of supplies, it is becoming increasingly apparent that the effective utilization of water resources requires a more productive set of governing institutions. That set of productive institutions was collectively embraced through the marketplace.
At the time, governing institutions were effectively limited to federal, state, and local regulatory frameworks and oversight. It was my belief that water pricing mechanisms and the unfettered transferability of water rights, among other market-based solutions, would inevitably lead to equilibrium in the supply and demand for water. Granted, there were hurdles to overcome such as pollution externalities and public (common) good issues where market failure is predictable, but nothing that a close relationship between governments and markets could not work through.
Over 20 years later, I have seasoned to the fundamental realities of a critical industry in transition, subject to pricing challenges and politically restrained to trend toward the equilibrium that is so natural in most other markets and so needed in this one. The allocation of water to this day does not even remotely adhere to the forces of a market seeking equilibrium, and it is clear that a price-driven optimal allocation will not always equate to an optimal distribution. Not coincidentally, the global condition of our water resources has never been more in peril nor the investment opportunities greater.
The inflection point is upon us. Water will be the resource that defines the twenty-first century driven by a substantial increase in its value. This value will inevitably be unlocked as the global population adjusts to the linkages between human health, economic development, and resource sustainability. But what is meant by value? As investors know, value can be an instructive yet elusive concept. Indeed, one of the dilemmas that Adam Smith faced in writing An Inquiry into the Nature and Causes of the Wealth of Nations (which set the foundation for the field of modern economics) involved tracing the roots of value. By discovering the source of value, Smith hoped to find a benchmark for measuring economic growth. He identified two different meanings of value (value in use and value in exchange) and observed that things that have a high value in use frequently have very little or no value in exchange. And, conversely, goods that have the greatest value in exchange often have inconsequential value in use.
Smith summed this up in the form of a puzzling contradiction: the diamond-water paradox. Why is it that diamonds, which have limited practical use (and no survival value), command a higher price than water, which is a prerequisite for life? Smith could not solve the paradox and instead identified labor as the source of value. What is instructive, and telling, was how he phrased the explanation: The real price of every thing, what every thing really costs to the man who wants to acquire it, is the toil and trouble of acquiring it. Price was related to a factor of production (i.e., labor), thereby circumventing the original quest for the source of value to the consumer.
While we must not forget that in Smiths day natural resources were effectively viewed as unlimited, he certainly understood the value of water to someone thirsting in the desert. But again, at the time, such a scenario was a simple issue of supply and demand (neither curve was at issue), not an explanation of why the price of diamonds was greater than the price of water. It was not until the neoclassical economists of the late nineteenth century that the answer was told. The resolution of the paradox involved one of the most enduring metaphors in the history of economics and indirectly set in motion a divergence between economics and ecology, with implications far greater than anyone could have imagined.
Enter the theory of marginal utility. This subjective theory of value states that the price of a good is determined by its marginal utility, not by the amount of labor inputs and not by its total usefulness. Utility refers to the ability of a good or service to satisfy a want, and the immeasurable units of satisfaction are metaphorically called utils.
Water may have a very high total utility, but its general availability creates a low marginal utility and, since price is determined at the margin, a price that is artificially low. As economists suggest, do not confuse utility with usefulness; in other words, dont confuse the metaphor as a metaphor. The intuitively obvious inelasticity of demand for water is rendered nonsensical by a price that is not rendered at the margin; again, the marginal utility of water is ordinarily low because a single incremental unit seldom commands extraordinary satisfaction. The diamond-water paradox was solved.That was the story then.
The reality today is that virtually every country in the world is presented with some combination of water quality and quantity issues. Total utility, in the form of ecology, is not afforded the proper treatment. This is the cause of the divergence between economics and ecology; the total usefulness of nature, and water, must be part of the equation. Now today, once again, it is a simple issue of supply and demand because both curves are the issue. If the model of global warming and the metaphor of climate change are necessary to understand the true meaning of ecology, then so be it. Not that six million years of geologic history in our lineage is enough to convince us, but can it be any clearer from the greenhouse gases metaphor of climate change that nature manages us, not the other way around? To explain why we must fuse the human economy with natures economy we must also retell the story of water.
I have intentionally stopped short of a more detailed exposition of the implications for water because it is critical that the investor constantly refer back to this paradox throughout the reading. The response to the diamond-water paradox will be a prominent part of the fundamentals associated with investment in water; for now, the answer will remain a question so that the reader refers back to the paradox as often as the content inspires reflection. This foreshadows the transition under way in the water industry; that is, the substantial increase in its value.
Why is all of this so important to investors in water? While the implications will be addressed in more detail in the concluding comments, investors must keep several things in mind as the journey progresses. First, there are no substitutes for water. Second, prices set at the margin should include the marginal cost of water. Third, value in exchange requires a measure of value and the ability to exchange. And fourth, total utility is relevant to ecology.