• Complain

Kramer - A Brief Introduction to Continuous Evolutionary Optimization

Here you can read online Kramer - A Brief Introduction to Continuous Evolutionary Optimization full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. City: Cham, year: 2014, publisher: Imprint, Springer, Springer International Publishing, genre: Children. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

Kramer A Brief Introduction to Continuous Evolutionary Optimization
  • Book:
    A Brief Introduction to Continuous Evolutionary Optimization
  • Author:
  • Publisher:
    Imprint, Springer, Springer International Publishing
  • Genre:
  • Year:
    2014
  • City:
    Cham
  • Rating:
    5 / 5
  • Favourites:
    Add to favourites
  • Your mark:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

A Brief Introduction to Continuous Evolutionary Optimization: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "A Brief Introduction to Continuous Evolutionary Optimization" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.--Font no determinada.

Kramer: author's other books


Who wrote A Brief Introduction to Continuous Evolutionary Optimization? Find out the surname, the name of the author of the book and a list of all author's works by series.

A Brief Introduction to Continuous Evolutionary Optimization — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "A Brief Introduction to Continuous Evolutionary Optimization" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Part 1
Foundations
Oliver Kramer SpringerBriefs in Applied Sciences and Technology A Brief Introduction to Continuous Evolutionary Optimization 2014 10.1007/978-3-319-03422-5_1
The Author(s) 2014
1. Introduction
Oliver Kramer 1
(1)
Department fr Informatik, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
Oliver Kramer
Email:
Abstract
Many optimization problems that have to be solved in practice are black box problems. Often, not much is known about an optimization problem except the information one can get via function evaluations. Neither derivatives nor constraints are known. In the worst case, nothing is even known about the characteristics of the fitness function, e.g., whether it is uni- or multimodal.
Many optimization problems that have to be solved in practice are black box problems. Often, not much is known about an optimization problem except the information one can get via function evaluations. Neither derivatives nor constraints are known. In the worst case, nothing is even known about the characteristics of the fitness function, e.g., whether it is uni- or multimodal. This scenario affords the application of specialized optimization strategies often called direct search methods. Evolutionary algorithms that mimic the biological notion of evolution and employ stochastic components to search in the solution space have grown to strong optimization methods. Evolutionary methods that are able to efficiently search in large optimization scenarios and learn from observed patterns in data mining scenarios have found broad acceptance in many disciplines, e.g., civil and electrical engineering. The methods have been influenced from various disciplines: robotics, statistics, computer science, engineering, and the cognitive sciences. This might be the reason for the large variety of techniques that have been developed in the last decades. The employment of computer simulations has become outstandingly successful in engineering within the last years. This development includes the application of optimization and learning techniques in the design and prototype process. Simulations allow the study of prototype characteristics before the product has actually been manufactured. Such a process allows an entirely computed-based optimization of the whole prototype or of its parts and can result in significant speedups and savings of material and money.
Learning and optimization are strongly related to each other. In optimization, one seeks for optimal parameters of a function or system w.r.t. a defined objective. In machine learning, one seeks for an optimal functional model that allows to describe relations between observations. Pattern recognition and machine learning problems also involve solving optimization problems. Many different optimization approaches are employed, from heuristics with stochastic components to exact convex methods.
Fig 11 Survey of problem classes the methods in this work belong to - photo 1
Fig. 1.1
Survey of problem classes the methods in this work belong to: evolutionary optimization, super-, and unsupervised learning
The goal of this book is to give a brief introduction to latest heuristics in evolutionary optimization for continuous solution spaces. The beginning of the work gives a short introduction to the main problem classes of interest: optimization, super-, and unsupervised learning, see Fig.. Optimization is the problem of finding optimal parameters for arbitrary models and functions. Supervised learning is about finding functional models that best model observations with given label information. Unsupervised learning is about learning functional models only based on the structure of the data itself, i.e., without label information. The following three paragraphs give a short introduction to the three problem classes.
1.1 Optimization
Optimization is the search for optimal parameters of a system. The parameters are known as design or objective variables. We assume a set Picture 2 of solutions that we call solution space or search space. A typical example for a solution space is the set Picture 3 of continuous values. In most cases, not only one, but many values have to be optimized at the same time resulting in an Picture 4 -dimensional search problem, or search problem dimensionality, respectively. For continuous solution spaces, this means we search in Picture 5 . A famous optimization problem is the traveling salesperson problem. The salesperson has to find the shortest tour through a set of cities and go back to the city, where he started from. In this scenario, a solution consists of a sequence of cities. A feasible solution must contain all cities. Obviously, the solution space has a different structure than the set of continuous solutions. For such solution spaces, special operators have to be employed. We focus on continuous optimization in this book.
Optimality can only be defined w.r.t. some quality measure. We measure the quality of a solution with the help of a quality function Picture 6 that we also call fitness function. An optimal solution Picture 7 has a better fitness Picture 8 than all other solutions Picture 9 in the solution space A Brief Introduction to Continuous Evolutionary Optimization - image 10 , i.e., for an optimal solution A Brief Introduction to Continuous Evolutionary Optimization - image 11 it holds A Brief Introduction to Continuous Evolutionary Optimization - image 12 for all Picture 13 . This definition holds for single-objective optimization problems and has to be extended for multi-objective problems via the concept of Pareto optimality, see Chap.. Without loss of generality, I concentrate on minimization problems. Maximization problems can easily be transformed into minimization problems by inversion of the objective function
A Brief Introduction to Continuous Evolutionary Optimization - image 14
(1.1)
A solution A Brief Introduction to Continuous Evolutionary Optimization - image 15 with a better fitness A Brief Introduction to Continuous Evolutionary Optimization - image 16 than the solutions in its environment A Brief Introduction to Continuous Evolutionary Optimization - image 17
Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «A Brief Introduction to Continuous Evolutionary Optimization»

Look at similar books to A Brief Introduction to Continuous Evolutionary Optimization. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «A Brief Introduction to Continuous Evolutionary Optimization»

Discussion, reviews of the book A Brief Introduction to Continuous Evolutionary Optimization and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.