• Complain

Giovambattista Amendola - Thermodynamics of Materials with Memory: Theory and Applications

Here you can read online Giovambattista Amendola - Thermodynamics of Materials with Memory: Theory and Applications full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2021, publisher: Springer, genre: Home and family. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

Giovambattista Amendola Thermodynamics of Materials with Memory: Theory and Applications

Thermodynamics of Materials with Memory: Theory and Applications: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Thermodynamics of Materials with Memory: Theory and Applications" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

This monograph deals with the mechanics and thermodynamics of materials with memory, including properties of the dynamical equations that describe their evolution in time under varying loads. A work in four parts, the first is an introduction to continuum mechanics, including classical fluid mechanics, linear and non-linear elasticity. The second part considers continuum thermodynamics and its use to derive constitutive equations of materials with memory, including viscoelastic solids, fluids, heat conductors and some examples of non-simple materials. In the third part, free energies for materials with linear memory constitutive relations are discussed. The concept of a minimal state is introduced. Explicit formulae are presented for the minimum and related free energies. The final part deals with existence, uniqueness, and stability results for the integrodifferential equations describing the dynamical evolution of viscoelastic materials, including a new approach based on minimal states rather than histories. There are also chapters on the controllability of thermoelastic systems with memory, the Saint-Venant problem for viscoelastic materials and on the theory of inverse problems. The second edition includes a new chapter on thermoelectromagnetism as well as recent findings on minimal states and free energies. It considers the case of minimum free energies for non-simple materials and dielectrics, together with an introduction to fractional derivative models.

Giovambattista Amendola: author's other books


Who wrote Thermodynamics of Materials with Memory: Theory and Applications? Find out the surname, the name of the author of the book and a list of all author's works by series.

Thermodynamics of Materials with Memory: Theory and Applications — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Thermodynamics of Materials with Memory: Theory and Applications" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Contents
Landmarks
Book cover of Thermodynamics of Materials with Memory Giovambattista - photo 1
Book cover of Thermodynamics of Materials with Memory
Giovambattista Amendola , Mauro Fabrizio and John Murrough Golden
Thermodynamics of Materials with Memory
Theory and Applications
2nd ed. 2021
Logo of the publisher Giovambattista Amendola Dipartimento di Matematica - photo 2
Logo of the publisher
Giovambattista Amendola
Dipartimento di Matematica, University of Pisa, Pisa, Italy
Mauro Fabrizio
Dipartimento di Matematica, University of Bologna, Bologna, Italy
John Murrough Golden
Grangegorman Campus, Technological University - Dublin, Dublin, Ireland
ISBN 978-3-030-80533-3 e-ISBN 978-3-030-80534-0
https://doi.org/10.1007/978-3-030-80534-0
Mathematics Subject Classication (2010): 74A15 74D05 30E20 35J10 35K05
Springer Nature Switzerland AG 2012, 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to Adele, Alessandra, and Marie

Preface to Second Edition

The major motivations for writing a second edition of this book were to include important results from a series of papers published since 2011, to present a fairly detailed discussion of thermoelectromagnetism, in particular, free energies in dielectric materials, and also to explore some features of fractional derivative models of materials with memory.

The first of these aims has resulted in the merger of Chaps. 15 and 16 of the first edition, with the omission, for the sake of simplicity, of certain interesting though somewhat peripheral topics, and the presentation of new material in Chaps. of the new edition and the omission of the discussion of nonsimple electromagnetism from Eq. (3.7.20) to before (3.7.27) in the first edition.

A few minor corrections, noticed since the publication of the original edition, have also been made, together with slight changes required in earlier chapters by the merger of Chaps. 15 and 16.

The authors would like to thank Dipartimento di MatematicaUniversit di Pisa (Italy), Dipartimento di MatematicaUniversit di Bologna (Italy), Technological UniversityDublin (Ireland), respectively, for support during the writing of the second edition. We also thank Gennaro Amendola once again for his invaluable advice on matters related to LATE X.

Giovambattista Amendola
Mauro Fabrizio
John Murrough Golden
Pisa, Italy Bologna, Italy Dublin, Ireland
Preface to First Edition

This book arose out of a conversation that took place in a bookshop in Berkeley, California, almost a decade ago. The original motivation was to provide a text on continuum thermodynamics that would allow a systematic derivation and discussion of free-energy functionals for materials with memory, including in particular explicit expressions for the minimum and related free energies, which were being developed at the time.

Progress was very slow, due to other commitments. The vision of what the book would explore broadened considerably over the years, in particular to include minimal states and a new single-integral free-energy functional that explicitly depends on the minimal state. Also, it was decided to include a detailed description of an alternative approach to the analysis of the integrodifferential equations describing the evolution of viscoelastic materials under varying loads, using minimal states and free-energy functionals depending on the minimal state. This is a novel approach to a well-known topic.

Our desire was to make the work as self-contained as possible, so chapters dealing with the general theory of continuum mechanics were included, with sections devoted to classical materials, specifically elastic bodies and fluids without explicit memory-dependence. These provided essential background to the more general and modern developments relating to materials with memory.

It was furthermore felt that certain other topics had not been covered previously in book form and should be included, in particular control theory and the Saint-Venant and inverse problems, as well as some discussion of nonsimple behavior, for materials with memory.

The book is divided into four parts. The mathematical presentation in the first three parts is largely accessible not only to applied mathematicians but also to mathematically oriented engineers and scientists. However, a higher standard is required for some of the chapters in the final part.

The authors wish to thank S. Chirita, A. Lorenzi, M.G. Naso, and V. Pata for their aid in writing Chaps. (Lorenzi). One of the authors gratefully acknowledges support for research travel from the Dublin Institute of Technology during the period of preparation of this work. All of us express our thanks to Gennaro Amendola for his very useful advice and help on certain deeper aspects of LATE X.

Giovambattista Amendola
Mauro Fabrizio
John Murrough Golden
Pisa, Italy Bologna, Italy Dublin, Ireland
February 2011
Introduction

In this work, we consider materials the constitutive equations of which contain a dependence upon the past history of kinetic variables. In particular, we deal with the constraints imposed upon these constitutive equations by the laws of thermodynamics. Such materials are often referred to as materials with memory or with hereditary effects.

The study of materials with memory arises from the pioneering articles of Boltzmann [38, 39] and Volterra [316318], in which they sought an extension of the concept of an elastic material . The key assumption of the theory was that the stress at a time t depends upon the history of the deformation up to t. The hypothesis that the remote history has less influence than the recent history is already implicit in their work. This assumption, later termed the fading memory principle by Coleman and Noll [73], is imposed by means of a constitutive equation for the stress, of integral type, which in the linear case involves a suitable kernel (relaxation function) that is a positive, monotonic, decreasing function.

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Thermodynamics of Materials with Memory: Theory and Applications»

Look at similar books to Thermodynamics of Materials with Memory: Theory and Applications. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Thermodynamics of Materials with Memory: Theory and Applications»

Discussion, reviews of the book Thermodynamics of Materials with Memory: Theory and Applications and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.