• Complain

Osvaldo Martin - Bayesian Analysis with Python

Here you can read online Osvaldo Martin - Bayesian Analysis with Python full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. year: 2016, publisher: Packt Publishing, genre: Science. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

No cover
  • Book:
    Bayesian Analysis with Python
  • Author:
  • Publisher:
    Packt Publishing
  • Genre:
  • Year:
    2016
  • Rating:
    4 / 5
  • Favourites:
    Add to favourites
  • Your mark:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Bayesian Analysis with Python: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Bayesian Analysis with Python" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

Bayesian modeling with PyMC3 and exploratory analysis of Bayesian models with ArviZ

Key Features
  • A step-by-step guide to conduct Bayesian data analyses using PyMC3 and ArviZ
  • A modern, practical and computational approach to Bayesian statistical modeling
  • A tutorial for Bayesian analysis and best practices with the help of sample problems and practice exercises.
Book Description

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models.

The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others.

By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.

What you will learn
  • Build probabilistic models using the Python library PyMC3
  • Analyze probabilistic models with the help of ArviZ
  • Acquire the skills required to sanity check models and modify them if necessary
  • Understand the advantages and caveats of hierarchical models
  • Find out how different models can be used to answer different data analysis questions
  • Compare models and choose between alternative ones
  • Discover how different models are unified from a probabilistic perspective
  • Think probabilistically and benefit from the flexibility of the Bayesian framework
Who this book is for

If you are a student, data scientist, researcher, or a developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory so no previous statistical knowledge is required, although some experience in using Python and NumPy is expected.

Downloading the example code for this book You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Osvaldo Martin: author's other books


Who wrote Bayesian Analysis with Python? Find out the surname, the name of the author of the book and a list of all author's works by series.

Bayesian Analysis with Python — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Bayesian Analysis with Python" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Bayesian Analysis with Python Second Edition Introduction to statistical - photo 1
Bayesian Analysis with Python
Second Edition
Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ
Osvaldo Martin

BIRMINGHAM - MUMBAI Bayesian Analysis with PythonSecond Edition Copyright - photo 2

BIRMINGHAM - MUMBAI
Bayesian Analysis with PythonSecond Edition

Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book....

I dedicate this book to Abril.
maptio Mapt is an online digital library that gives you full access to over - photo 3
mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?
  • Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

  • Improve your learning with Skill Plans built especially for you

  • Get a free eBook or video every month

  • Mapt is fully searchable

  • Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Foreword

Probabilistic programming is a framework that allows you to flexibly build Bayesian statistical models in computer code. Once built, powerful inference algorithms that work independently of the model you formulated can be used to fit your model to data. This combination of flexible model specification and automatic inference provides a powerful tool for the researcher to quickly build, analyze, and iteratively improve novel statistical models. This iterative approach is in stark contrast to the way Bayesian models were fitted to data before: previous inference algorithms usually only worked for one specific model. Not only did this require strong mathematical skills to formulate the model and devise an inference scheme, it also considerably slowed down the iterative cycle: change the model, re-derive your inference. Probabilistic programming thus democratizes statistical modeling by considerably lowering the mathematical understanding and time required to successfully build novel models and gain unique insights into your data.

The idea behind probabilistic programming is not new: BUGS, the first of its kind, was first released in 1989. The kinds of model that could be fitted successfully were extremely limited and inference was slow, rendering these first-generation languages not very practical. Today, there are a multitude of probabilistic programming languages that are widely used in academia and at companies such as Google, Microsoft, Amazon, Facebook, and Uber to solve large and complex problems. What has changed? The key factor in lifting probabilistic programming from being a cute toy to the powerful engine that can solve complex large-scale problems is the advent of Hamiltonian Monte Carlo samplers, which are several orders of magnitude more powerful than previous sampling algorithms. While originally devised in 1987, only the more recent probabilistic programming systems named Stan and PyMC3 made these samplers widely available and usable.

This book will give you a practical introduction to this extremely powerful and flexible tool. It will have a big impact on how you think about and solve complex analytical problems. There are few people better suited to have written it than PyMC3 core developer Osvaldo Martin. Osvaldo has the rare talent of breaking complex topics down to make them easily digestible. His deep practical understanding, gained through hard-won experience, allows him to take you, the reader, on the most efficient route through this terrain, which could otherwise easily seem impenetrable. The visualizations and code examples make this book an eminently practicable resource through which you will gain an intuitive understanding of their theoretical underpinnings.

I also would like to commend you, dear reader, for having picked up this book. It is not the fast and easy route. In a time where headlines advertise deep learning as the technique to solve all current and future analytical problems, the more careful and deliberate approach of building a custom model for a specific purpose might not seem quite as attractive. However, you will be able to solve problems that can hardly be solved any other way.

This is not to say that deep learning is not an extremely exciting technique. In fact, probabilistic programming itself is not constrained to classic statistical models. Reading the current machine learning literature, you will find that Bayesian statistics is emerging as a powerful framework to express and understand next-generation deep neural networks. This book will thus equip you not only with the skills to solve hard analytical problems, but also to have a front-row seat in humanity's perhaps greatest endeavor: the development of artificial intelligence. Enjoy!

Thomas Wiecki, PhD

Head of Research at Quantopian.

Contributors
What this book covers

, Thinking Probabilistically, covers the basic concepts of Bayesian statistics and its implications for data analysis. This chapter contains most of the foundational ideas used in the rest of the book.

, Programming Probabilistically, revisits the concepts from the previous chapter from a more computational perspective. The PyMC3 probabilistic programming library is introduced, as well as ArviZ, a Python library for exploratory analysis of Bayesian models. Hierarchical models are explained with a couple of examples.

, Modeling with Linear Regression, covers the basic elements of linear regression, a very widely used model and the building block of more complex models.

, Generalizing Linear Models, covers how to expand linear models with other distributions than the Gaussian, opening the door to solving many data analysis problems.

, Model Comparison, discusses how to compare, select, and average models using WAIC, LOO, and Bayes factors. The general caveats of these methods are discussed.

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Bayesian Analysis with Python»

Look at similar books to Bayesian Analysis with Python. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Bayesian Analysis with Python»

Discussion, reviews of the book Bayesian Analysis with Python and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.