• Complain

Villani - Birth of a theorem: a mathematical adventure

Here you can read online Villani - Birth of a theorem: a mathematical adventure full text of the book (entire story) in english for free. Download pdf and epub, get meaning, cover and reviews about this ebook. City: France, year: 2016, publisher: Farrar, Straus and Giroux;Faber and Faber, genre: Detective and thriller. Description of the work, (preface) as well as reviews are available. Best literature library LitArk.com created for fans of good reading and offers a wide selection of genres:

Romance novel Science fiction Adventure Detective Science History Home and family Prose Art Politics Computer Non-fiction Religion Business Children Humor

Choose a favorite category and find really read worthwhile books. Enjoy immersion in the world of imagination, feel the emotions of the characters or learn something new for yourself, make an fascinating discovery.

No cover
  • Book:
    Birth of a theorem: a mathematical adventure
  • Author:
  • Publisher:
    Farrar, Straus and Giroux;Faber and Faber
  • Genre:
  • Year:
    2016
  • City:
    France
  • Rating:
    4 / 5
  • Favourites:
    Add to favourites
  • Your mark:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Birth of a theorem: a mathematical adventure: summary, description and annotation

We offer to read an annotation, description, summary or preface (depends on what the author of the book "Birth of a theorem: a mathematical adventure" wrote himself). If you haven't found the necessary information about the book — write in the comments, we will try to find it.

An intimate look inside a mathematicians mind as he wrestles with the theorem that will make his reputation--;An intimate look inside a mathematicians mind as he wrestles with the theorem that will make his reputation Cdric Villani is a rock-star mathematician. An intellect of unusual depth and breadth, he is the director of Frances greatest mathematics research institute. In 2010 he received the Fields Medal, the most coveted prize in mathematics, for his proofs resolving one of the most controversial theories of classical physics. Birth of a Theorem is his own account of the year leading up to the award. It invites readers inside the mind of a genius as he wrestles with the most important work of his career. But you dont have to understand nonlinear Landau damping to love Birth of a Theorem. It doesnt simplify or overexplain; rather, it invites readers into collaboration. Villanis diaries, e-mails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. Youre privy to the mess-hall conversations of the worlds greatest research institutions. Villani discusses his favorite songs, his love of manga, and the imaginative stories he tells his children. Mathematics is like any other creative work in that the thinkers whole life propels discovery--and with Birth of a Theorem, Villani welcomes you into his--

Villani: author's other books


Who wrote Birth of a theorem: a mathematical adventure? Find out the surname, the name of the author of the book and a list of all author's works by series.

Birth of a theorem: a mathematical adventure — read online for free the complete book (whole text) full work

Below is the text of the book, divided by pages. System saving the place of the last page read, allows you to conveniently read the book "Birth of a theorem: a mathematical adventure" online for free, without having to search again every time where you left off. Put a bookmark, and you can go to the page where you finished reading at any time.

Light

Font size:

Reset

Interval:

Bookmark:

Make
Contents
Guide
The author and publisher have provided this e-book to you for your personal use - photo 1

The author and publisher have provided this e-book to you for your personal use - photo 2

The author and publisher have provided this e-book to you for your personal use only. You may not make this e-book publicly available in any way. Copyright infringement is against the law. If you believe the copy of this e-book you are reading infringes on the authors copyright, please notify the publisher at: us.macmillanusa.com/piracy.

I am often asked what its like to be a mathematicianwhat a mathematicians daily life is like, how a mathematicians work gets done. In the pages that follow I try to answer these questions.

This book tells the story of a mathematical journey, a quest, from the moment when the decision is made to venture forth into the unknown until the moment when the article announcing a new resulta new theorem is accepted for publication in an international journal.

Far from moving swiftly between these two points, in a straight line, the mathematician moves forward haltingly, along a long and winding road. He meets with obstacles, suffers setbacks, sometimes loses his way. As we all do from time to time.

Apart from a few insignificant details, the story I have told here is in agreement with reality, or at least with reality as I experienced it.

My thanks to Olivier Nora for having encouraged me, on the occasion of a chance encounter, to write this book; thanks to Claire for her careful reading and many helpful suggestions; thanks to Claude for his fine illustrations; thanks to Ariane Fasquelle and the staff at Grasset for grasping at once my purpose in writing this book and for their care in preparing the final manuscript for the typesetter; thanks, finally, to Clment for an unforgettable collaboration, without which this book wouldnt exist.

Cdric Villani
Paris, December 2011

Lyon

March 23, 2008

One oclock on a Sunday afternoon. Normally the laboratory would be deserted, were it not for two busy mathematicians in need of a quiet place to talkthe office that Ive occupied for eight years now on the third floor of a building on the campus of the cole Normale Suprieure in Lyon.

Im seated in a comfortable armchair, insistently tapping my fingers on the large desk in front of me. My fingers are spread apart like the legs of a spider. Just as my piano teacher trained me to do, years ago.

To my left, on a separate table, a computer workstation. To my right a cabinet containing several hundred works of mathematics and physics. Behind me, neatly arranged on long shelves, thousands and thousands of pages of articles, lawfully photocopied back in the days when scientific journals were still printed on paper, and a great many mathematical monographs, unlawfully photocopied back in the days when I didnt make enough money to buy all of the books I wanted. There are also a good three feet of rough drafts of my own work, meticulously archived over many years, and quite as many feet of handwritten notes, the legacy of hours and hours spent listening to research talks. In front of me, Gaspard, my laptop computer, named in honor of Gaspard Monge, the great mathematician and revolutionary. And a stack of pages covered with mathematical symbolsmore notes from every one of the eight corners of the world, assembled especially for this occasion.

My partner, Clment Mouhot, stands to one side of the great whiteboard that takes up the entire wall in front of me, marker in hand, eyes sparkling.

So whats up? Your message was pretty vague.

My old demons back againregularity for the inhomogeneous Boltzmann.

Conditional regularity? You mean, modulo minimal regularity bounds?

No, unconditional.

Completely? Not even in a perturbative framework? You really think its possible?

Yes, I do. Ive been working on it again for a while now and Ive made pretty good progress. I have some ideas. But now Im stuck. I broke the problem down using a series of scale models, but even the simplest one baffles me. I thought Id gotten a handle on it with a maximum principle argument, but everything fell apart. I need to talk.

Go on, Im listening.

* * *

I went on for a long time. About the result I have in mind, the attempts Ive made so far, the various pieces I cant fit together, the logical puzzle that so far has defeated me. The Boltzmann equation remains intractable.

Ah, the Boltzmann! The most beautiful equation in the world, as I once described it to a journalist. I fell under its spell when I was youngwhen I was writing my doctoral thesis. Since then Ive studied every aspect of it. Its all there in Boltzmanns equation: statistical physics, times arrow, fluid mechanics, probability theory, information theory, Fourier analysis, and more. Some people say that I understand the mathematical world of this equation better than anyone alive.

Seven years ago I initiated Clment into this mysterious world when he began his own thesis under my direction. He was eager to learn. Certainly hes the only person who has read everything Ive written on Boltzmanns equation. Now Clment is a respected member of the profession, a mathematician in his own right, brilliant, eager to get on with his own research.

Seven years ago I helped him get started; today Im the one who needs help. The problem Ive chosen to work on is exceedingly difficult. Ill never solve it by myself. Ive got to be able to explain what Ive done so far to someone who knows the theory inside out.

Lets assume grazing collisions, okay? A model without cutoff. Then the equation behaves like a fractional diffusion, degenerate, of course, but a diffusion just the same, and as soon as youve got bounds on density and temperature you can apply a Moser-style iteration scheme, modified to take nonlocality into account.

A Moser scheme? Hmmmm Hold on a moment, I need to write this down.

Yes, a Moser-style scheme. The key is that the Boltzmann operator true, the operator is bilinear, its not local, but even so its basically in divergence formthats what makes the Moser scheme work. You make a nonlinear function change, you raise the power. You need a little more than temperature, of course, theres a matrix of moments of order 2 that have to be controlled. But the positivity is the main thing.

Sorry, I dont followwhy isnt temperature enough?

I paused to explain why, at some length. We discussed. We argued. Before long the board was flooded with symbols. Clment was still unsure about the positivity. How can strict positivity be proved without any regularity bound? Is such a thing even imaginable?

Its not so shocking, when you think about it: collisions produce lower bounds; so does transport, in a confined system. So it makes sense. Unless were completely missing something, the two effects ought to reinforce each other. Bernt tried a while ago, he gave up. A whole bunch of people have tried, but no ones had any luck so far. Still, its plausible.

Youre sure that the transport is going to turn out to be positive without regularity? And yet without collisions, you bring over the same density value, it doesnt become more positive

I know, but when you average the velocities, it strengthens the positivitya little like what happens with the averaging lemmas for kinetic equations. But here were dealing with positivity, not regularity. No ones really looked at it from this angle before. Which reminds me when was it? Thats it! Two years ago, at Princeton, a Chinese postdoc asked me a somewhat similar question. You take a transport equation, in the torus, say. Assuming zero regularity, you want to show that the spatial density becomes strictly positive. Without regularity! He could do it for free transport, and for something more general on small time scales, but for larger times he was stymied. I remember asking other people about it at the time, but no one had a convincing answer.

Next page
Light

Font size:

Reset

Interval:

Bookmark:

Make

Similar books «Birth of a theorem: a mathematical adventure»

Look at similar books to Birth of a theorem: a mathematical adventure. We have selected literature similar in name and meaning in the hope of providing readers with more options to find new, interesting, not yet read works.


Reviews about «Birth of a theorem: a mathematical adventure»

Discussion, reviews of the book Birth of a theorem: a mathematical adventure and just readers' own opinions. Leave your comments, write what you think about the work, its meaning or the main characters. Specify what exactly you liked and what you didn't like, and why you think so.