Rolf D. Schmid
Claudia Schmidt-Dannert
Biotechnology
An Illustrated Primer
171 color plates by Ruth Hammelehle
Authors:
Prof. Dr. Rolf D. Schmid
Bio4Business
Jagdweg 3
70569 Stuttgart
Germany
Prof. Dr. Claudia Schmidt-Dannert
University of Minnesota
Department of Biochemistry
1479 Gortner Ave
140 Gortner Lab
St. Paul, MN 55108
USA
Graphic Designer:
Ruth Hammelehle
Marktplatz 5
73230 Kirchheim unter Teck
Germany
Cover:
DNA helix from fotolia
A-Mihalis
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Library of Congress Card No.:
applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at .
2016 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form by photoprinting, microfilm, or any other means nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33515-2
Preface to the 1st edition
Biotechnology, a key technology of the 21st century, is more than other fields an interdisciplinary endeavor. Depending on the particular objective, it requires knowledge in general biology, molecular genetics, and cell biology; in human genetics and molecular medicine; in virology, microbiology, and biochemistry; in the agricultural and food sciences; in enzyme technology, bioprocess engineering, and systems science. And in addition, biocomputing and bioinformatics play an ever-increasing role. Against this background, it is of little surprise that few concise textbooks try to cover the whole field, and important applied aspects such as animal and plant breeding or analytical biotechnology are often missing even from multivolume monographs.
On the other hand, I have experienced during my own life-long studies, and also when teaching my students, how energizing it is to emerge occasionally from the thousands of details which must be learned, to look at a unifying view.
The Pocket Guide to Biotechnology and Genetic Engineering is an attempt to provide this kind of birds-eye perspective. Admittedly, it is daring to discuss each of this books topics, ranging from Beer to Tissue Engineering and Systems Biology, on a single text page, followed by one page of graphs and tables. After all, monographs, book chapters, reviews, and hundreds of scientific publications are devoted to each single entry covered in this book (many of them are provided in the literature citations). On the other hand, the challenge of surveying each entry in barely more than 4000 characters forces one to concentrate on the essentials and to put them into a wider perspective.
I hope that I have succeeded at least to some extent in this endeavor, and that you will find the clues to return safely from the highly specialized world of science, and its sophisticated terms, to your own evaluation of the opportunities and challenges that modern biotechnology offers to all of us.
This English version is not a simple translation of the original version, which was published in German in December, 2001, but an improved and enlarged second edition: apart from a general update of all data, it contains three new topics (Tissue Engineering, RNA, and Systems Biology).
At this point, my thanks are due to some people who have essentially contributed to this book. Above all, I wish to acknowledge the graphic talent of Ruth Hammelehle, Kirchheim, Germany, who has done a great job in translating scientific language into very clear and beautiful graphs. Marjorie Tiefert, San Ramon, California, has been more than an editor: she has caught and expressed the original spirit of this book. My thanks also to the publisher, in particular to Romy Kirsten. Special thanks are due to the many colleagues in academia and industry who have contributed their time and energy to read through the entries in their areas of expertise and provide me with most useful suggestions and corrections. These were: Max Roehr, University of Vienna; Waander Riethorst, Biochemie GmbH, Kundl; Frank Emde, Heinrich Frings GmbH, Bonn; Peter Duerre, University of Ulm; Edeltraut Mast-Gerlach, Ulf Stahl and Dietrich Knorr, Technical University Berlin; Udo Graefe, Hans-Knoell Institute, Jena; Jochen Berlin, GBF, Braunschweig; Allan Svenson, Novozymes A/S, Copenhagen; Helmut Uhlig, Breisach; Frieder Scheller, University of Potsdam; Bertold Hock, University of Munich-Weihenstephan; Rolf Blaich, Rolf Claus, Helmut Geldermann and Gerd Weber, University of Hohenheim; Hans-Joachim Knackmuss, Dieter Jendrossek, Karl-Heinrich Engesser, Joerg Metzger, Peter Scheurich, Ulrich Eisel, Matthias Reuss, Klaus Mauch, Christoph Syldatk, Michael Thumm, Joseph Altenbuchner, Paul Keller and Ulrich Kull, University of Stuttgart; Thomas von Schell, Stuttgart; Joachim Siedel, Roche AG, Penzberg; Rolf Werner and Kerstin Maier, Boehringer-Ingelheim, Biberach; Frank-Andreas Gunkel, Bayer AG, Wuppertal; Michael Broeker, Chiron Bering GmbH, Marburg; Bernhard Hauer and Uwe Pressler, BASF AG, Ludwigshafen; Frank Zocher, Aventis Pharma, Hoechst; Tilmann Spellig, Schering AG, Bergkamen; Akira Kuninaka, Yamasa Corporation, Chosi; Ian Sutherland, University of Edinburgh; Julia Schueler, Ernst & Young, Frankfurt. Among the many members of my institute in Stuttgart who have IX patiently helped me with the manuscript I wish to especially acknowledge Jutta Schmitt, Till Bachmann, Jrgen Pleiss and Daniel Appel.
In spite of all efforts and patient cross-checking, it would be a miracle if no unclearness or errors exist. These are entirely the authors fault. I would be most grateful to all readers who will let me know, via the web address www.itb.unistuttgart.de/pocketguide, where this book can be further improved.
Rolf D. Schmid
Stuttgart, New Year 2002/2003
Preface to the 2nd edition
In the 10 years since the first edition of this booklet in English, the developments in biotechnology have further accelerated. This is true for the science, which has generated new methods such as synthetic biology, genome editing or high-throughput sequencing of genomes, generating big data which provide us with ever more detailed perceptions of the living world. New applications in industry have followed suit in the medical sciences, eminent examples are the therapeutic antibodies, iPS-derived stem-cell technologies or a personalized medicine based on SNP analysis and companion diagnostics; in industrial biotechnology, the emerging concepts of a bioeconomy based on renewable resources such as biomass, waste or carbon dioxide provide certainly a megatrend. It goes without saying that a little booklet can only provide short sketches for each of these fields. An updated literature suvey attempts to compensate for this shortcoming.
Next page