Acronyms
i.i.d. independent, identically distributed
d.f. distribution function
c.f. characteristic function
m.g.f. moment generating function
a.s. almost surely
w.p. 1 with probability 1
i.o. infinitely often
LDT large deviations theory
SLLN strong law of large numbers
LIL law of the iterated logarithm
CLT central limit theorem
end of a proof
R the set of real numbers
N the set of natural numbers
an = o(bn) means that an/bn 0
an = O(bn) means that lim sup |an|/bn <
anbn means that an/bn 1
IB(x) the indicator of a Borel set B
IB the indicator of an event B
DX the variation of a random variable X
DN() domain of normal attraction of the asymmetric stable law with exponent > 1
D() domain of non-normal attraction of the asymmetric stable law with exponent > 1
SVa the set of slowly varying at a functions
RVa the set of regularly varying at a functions
f1(x) the inverse function to f(x)
#B the number of elements of a finite set B
[x] the integer part of x
Bibliography
Amosova, N. N. (1972). On limit theorems for probabilities of moderate deviations, Vestnik Leningrad Univ., 13, pp. 514, english transl.: Vestnik Leningrad Univ. Math., , 197210, (1978).
Amosova, N. N. (1979). On probabilities of moderate deviations for sums of independent random variables, Theor. Probab. Appl. , 4, pp. 858865, english transl.: Theor. Probab. Appl., , no. 4, 856863, (1980).
Amosova, N. N. (1980). On narrow zones of integral normal convergence, Zap. Nauchn. Semin. LOMI , pp. 614, english transl.: J. Sov. Math., , no. 5, 483489, (1984).
Amosova, N. N. (1984). Probabilities of large deviations in the case of stable limit distributions, Matem. Zametki , pp. 125131, english transl.: Mathematical Notes, , no. 1, 6871, (1984).
Bacro, J.-N. and Brito, M. (1991). On Masons extension of the Erd
sRnyi law of large numbers, Statist. Probab. Lett. , pp. 4347.
Bacro, J.-N., Deheuvels, P. and Steinebach, J. (1987). Exact convergence rates in Erd
sRnyi type theorems for renewal processes, Ann. Inst. HenriPoincar , pp. 195207.
Bahadur, R. R. and Ranga Rao, R. (1960). On deviations of the sample mean, Ann. Math. Statist. , 4, pp. 10151027.
Binswanger, K. and Embrechts, P. (1994). Longest runs in coin tossing, Insur. Math. Econom. , pp. 139149.
Book, S. A. (1975a). A version of the Erd
sRnyi law of large numbers for independent random variables, Bull. Inst. Math. Acad. Sinica , 2, pp. 199211.
Book, S. A. (1975b). An extension of the Erd
sRnyi new law of large numbers, Proc. Amer. Math. Soc. , 2, pp. 438446.
Book, S. A. and Shore, T. R. (1978). On large intervals in the Csrg
Rvsz theorem on increments of a Wiener process, Z. Wahrsch. Verw. Geb. , pp. 111.
Borovkov, A. A. (1964). Analisys of large deviations in boundary problems with arbitrary bounds. I, Siberian Math. J. , 2, pp. 253289.
Borovkov, A. A. and Borovkov, K. A. (2008). Asymptotic analysis of randomwalks. Heavy-tailed distributions (Cambridge University Press, New York).
Brieman, L. (1968). A delicate LIL for non-decreasing stable processes, Ann. Math. Statist. , pp. 18181824.
Cai, Z. (1992). Strong approximation and improved Erd
sRnyi laws for sums of independent non-identically distributed random variables, J. HangzhouUniv. , 3, pp. 240246.
Chan, A. H. (1976). Erd
sRnyi type modulus of continuity theorems for Brownian sheets, Studia Sci. Math. Hungar. , pp. 5968.
Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. , 4, pp. 493507.
Choi, Y. K. and Kno, N. (1999). How big are increments of a two-parameter Gaussian processes, J. Theoret. Probab. , pp. 105129.
Cramr, H. (1938). Sur un nouveau thorme limite de la thorie des probabilits, Actual. Sci. Indust., 736, pp. 523.
Cski, E. and Rvsz, P. (1979). How big must be the increments of a Wiener process? Acta Math. Acad. Sci. Hungar. , pp. 3749.
Csrg
, M. and Rvsz, P. (1978). How big are the increments of a multiparameter Wiener process? Z. Wahrsch. verw. Geb. , pp. 112.
Csrg
, M. and Rvsz, P. (1979). How big are the increments of a Wiener process? Ann. Probab. , pp. 731737.
Csrg
, M. and Rvsz, P. (1981). Strong approximations in probability and statistics (Akadmiai Kiad, Budapest).
Csrg
, M. and Steinebach, J. (1981). Improved Erd
sRnyi and strong approximation laws for increments of partial sums, Ann. Probab. , pp. 988996.
Csrg
, S. (1979). Erd
sRnyi laws, Ann. Statist. , pp. 772787.
Daniels, H. E. (1954). Saddlepoint approximations in statistics, Ann. Math. Statist. , 4, pp. 631650.
Deheuvels, P. (1985). On the Erd
sRnyi theorem for random fields and sequences and its relationships with the theory of runs and spacings, Z. Wahrsch. verw. Geb. , pp. 91115.
Deheuvels, P. and Devroye, L. (1987). Limit laws of Erd
sRnyiShepp type, Ann. Probab. , pp. 13631386.
Deheuvels, P. and Steinebach, J. (1989). Sharp rates for increments of renewal processes, Ann. Probab. , pp. 700722.
Einmahl, U. and Mason, D. M. (1996). Some universal results on the behaviour of increments of partial sums, Ann. Probab. , pp. 13881407.
Embrechts, P. and Clppelberg, C. (1993). Some aspects of insurance mathematics, Theor. Probab. Appl. , 2, pp. 374416, english transl.: Theor. Probab. Appl., , no. 3, 262295, (1993).
Erd
s, P. and Rnyi, A. (1970). On a new law of large numbers, J. Analyse Math. , pp. 103111.
Erd