Acronyms
i.i.d. independent, identically distributed
d.f. distribution function
c.f. characteristic function
m.g.f. moment generating function
a.s. almost surely
w.p. 1 with probability 1
i.o. infinitely often
LDT large deviations theory
SLLN strong law of large numbers
LIL law of the iterated logarithm
CLT central limit theorem
end of a proof
R the set of real numbers
N the set of natural numbers
an = o(bn) means that an/bn 0
an = O(bn) means that lim sup |an|/bn <
anbn means that an/bn 1
IB(x) the indicator of a Borel set B
IB the indicator of an event B
DX the variation of a random variable X
DN() domain of normal attraction of the asymmetric stable law with exponent > 1
D() domain of non-normal attraction of the asymmetric stable law with exponent > 1
SVa the set of slowly varying at a functions
RVa the set of regularly varying at a functions
f1(x) the inverse function to f(x)
#B the number of elements of a finite set B
[x] the integer part of x
Bibliography
Amosova, N. N. (1972). On limit theorems for probabilities of moderate deviations, Vestnik Leningrad Univ., 13, pp. 514, english transl.: Vestnik Leningrad Univ. Math., , 197210, (1978).
Amosova, N. N. (1979). On probabilities of moderate deviations for sums of independent random variables, Theor. Probab. Appl. , 4, pp. 858865, english transl.: Theor. Probab. Appl., , no. 4, 856863, (1980).
Amosova, N. N. (1980). On narrow zones of integral normal convergence, Zap. Nauchn. Semin. LOMI , pp. 614, english transl.: J. Sov. Math., , no. 5, 483489, (1984).
Amosova, N. N. (1984). Probabilities of large deviations in the case of stable limit distributions, Matem. Zametki , pp. 125131, english transl.: Mathematical Notes, , no. 1, 6871, (1984).
Bacro, J.-N. and Brito, M. (1991). On Masons extension of the ErdsRnyi law of large numbers, Statist. Probab. Lett. , pp. 4347.
Bacro, J.-N., Deheuvels, P. and Steinebach, J. (1987). Exact convergence rates in ErdsRnyi type theorems for renewal processes, Ann. Inst. HenriPoincar , pp. 195207.
Bahadur, R. R. and Ranga Rao, R. (1960). On deviations of the sample mean, Ann. Math. Statist. , 4, pp. 10151027.
Binswanger, K. and Embrechts, P. (1994). Longest runs in coin tossing, Insur. Math. Econom. , pp. 139149.
Book, S. A. (1975a). A version of the ErdsRnyi law of large numbers for independent random variables, Bull. Inst. Math. Acad. Sinica , 2, pp. 199211.
Book, S. A. (1975b). An extension of the ErdsRnyi new law of large numbers, Proc. Amer. Math. Soc. , 2, pp. 438446.
Book, S. A. and Shore, T. R. (1978). On large intervals in the CsrgRvsz theorem on increments of a Wiener process, Z. Wahrsch. Verw. Geb. , pp. 111.
Borovkov, A. A. (1964). Analisys of large deviations in boundary problems with arbitrary bounds. I, Siberian Math. J. , 2, pp. 253289.
Borovkov, A. A. and Borovkov, K. A. (2008). Asymptotic analysis of randomwalks. Heavy-tailed distributions (Cambridge University Press, New York).
Brieman, L. (1968). A delicate LIL for non-decreasing stable processes, Ann. Math. Statist. , pp. 18181824.
Cai, Z. (1992). Strong approximation and improved ErdsRnyi laws for sums of independent non-identically distributed random variables, J. HangzhouUniv. , 3, pp. 240246.
Chan, A. H. (1976). ErdsRnyi type modulus of continuity theorems for Brownian sheets, Studia Sci. Math. Hungar. , pp. 5968.
Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. , 4, pp. 493507.
Choi, Y. K. and Kno, N. (1999). How big are increments of a two-parameter Gaussian processes, J. Theoret. Probab. , pp. 105129.
Cramr, H. (1938). Sur un nouveau thorme limite de la thorie des probabilits, Actual. Sci. Indust., 736, pp. 523.
Cski, E. and Rvsz, P. (1979). How big must be the increments of a Wiener process? Acta Math. Acad. Sci. Hungar. , pp. 3749.
Csrg, M. and Rvsz, P. (1978). How big are the increments of a multiparameter Wiener process? Z. Wahrsch. verw. Geb. , pp. 112.
Csrg, M. and Rvsz, P. (1979). How big are the increments of a Wiener process? Ann. Probab. , pp. 731737.
Csrg, M. and Rvsz, P. (1981). Strong approximations in probability and statistics (Akadmiai Kiad, Budapest).
Csrg, M. and Steinebach, J. (1981). Improved ErdsRnyi and strong approximation laws for increments of partial sums, Ann. Probab. , pp. 988996.
Csrg, S. (1979). ErdsRnyi laws, Ann. Statist. , pp. 772787.
Daniels, H. E. (1954). Saddlepoint approximations in statistics, Ann. Math. Statist. , 4, pp. 631650.
Deheuvels, P. (1985). On the ErdsRnyi theorem for random fields and sequences and its relationships with the theory of runs and spacings, Z. Wahrsch. verw. Geb. , pp. 91115.
Deheuvels, P. and Devroye, L. (1987). Limit laws of ErdsRnyiShepp type, Ann. Probab. , pp. 13631386.
Deheuvels, P. and Steinebach, J. (1989). Sharp rates for increments of renewal processes, Ann. Probab. , pp. 700722.
Einmahl, U. and Mason, D. M. (1996). Some universal results on the behaviour of increments of partial sums, Ann. Probab. , pp. 13881407.
Embrechts, P. and Clppelberg, C. (1993). Some aspects of insurance mathematics, Theor. Probab. Appl. , 2, pp. 374416, english transl.: Theor. Probab. Appl., , no. 3, 262295, (1993).
Erds, P. and Rnyi, A. (1970). On a new law of large numbers, J. Analyse Math. , pp. 103111.
Erd