Copyright 2014 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-183044-7
MHID: 0-07-183044-8 The material in this books also appears in the print version of this title: ISBN: 978-0-07-183045-4, MHID: 0-07-183045-6. eBook conversion by codeMantra
Version 2.0 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark.
Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill Education books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com. Trademarks: McGraw-Hill Education, the McGraw-Hill Education logo, Schaums, and related trade dress are trademarks or registered trademarks of McGraw-Hill Education and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. TERMS OF USE This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. TERMS OF USE This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Educations prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED AS IS. McGraw-Hill Education AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.
Preface
The fifth edition of
Schaums Outline of Electric Circuits represents a revision and timely update of materials which expand its scope to the level of similar courses currently taught at the undergraduate level.
The book offers new sections on analysis methods for two-terminal resistive circuits and devices (including piecewise linear elements), circuits containing real op amps, Bode diagrams, first- and second-order filters and their implementation by active circuits, and Spice simulation of circuits containing op amps. The original goal of the book and the basic approach of the previous editions have been retained, however. The book is designed for use as a textbook for a first course in circuit analysis or as a supplement to standard texts and can be used by electrical engineering students as well as other engineering and technology students. Emphasis is placed on the basic laws, theorems and problem-solving techniques which are common to most courses. The subject matter is divided into 17 chapters covering duly recognized areas of theory and study. The chapters begin with statements of pertinent definitions, principles, and theorems together with illustrative examples.
This is followed by sets of solved and supplementary problems. The problems cover a range of levels of difficulty. Some problems focus on fine points, which helps the student to better apply the basic principles correctly and confidently. The supplementary problems are generally more numerous and give the reader an opportunity to practice problem-solving skills. Answers are provided with each supplementary problem. The book begins with fundamental definitions, circuit elements including dependent sources, circuit laws and theorems, and analysis techniques such as node voltage and mesh current methods.
These theorems and methods are initially applied to dc-resistive circuits and then extended to RLC circuits by the use of impedance and complex frequency. The op amp examples and problems in are selected carefully to illustrate simple but practical cases which are of interest and importance to future courses. The subject of waveforms and signals is treated in a separate chapter to increase the students awareness of commonly used signal models. Circuit behavior such as the steady state and transient response to steps, pulses, impulses and exponential inputs are discussed for first-order circuits in . Finally, two appendices provide a useful summary of complex number system, and matrices and determinants. This book is dedicated to our students, and students of our students, from whom we have learned to teach well.
To a large degree it is they who have made possible our satisfying and rewarding teaching careers. We also wish to thank our wives Zahra Nahvi and Nina Edminister for their continuing support. MAHMOOD NAHVI JOSEPH A. EDMINISTER
About the Authors
MAHMOOD NAHVI is professor emeritus of Electrical Engineering at California Polytechnic State University in San Luis Obispo, California. He earned his B.Sc., M.Sc., and Ph.D., all in electrical engineering, and has 50 years of teaching and research in this field. Dr.
Nahvis areas of special interest and expertise include network theory, control theory, communications engineering, signal processing, neural networks, adaptive control and learning in synthetic and living systems, communication and control in the central nervous system, and engineering education. In the area of engineering education, he has developed computer modules for electric circuits, signals, and systems which improve teaching and learning of the fundamentals of electrical engineering. JOSEPH A. EDMINISTER is professor emeritus of Electrical Engineering at the University of Akron in Akron, Ohio, where he also served as assistant dean and acting dean of Engineering. He was a member of the faculty from 1957 until his retirement in 1983. In 1984 he served on the staff of Congressman Dennis Eckart (D-11-OH) on an IEEE Congressional Fellowship.
Next page